949 resultados para electroless nickel
Resumo:
A new method for the fabrication of an integrated microelectrode for electrochemical detection (ECD) on an electrophoresis microchip is described. The pattern of the microelectrode was directly made on the surface of a microscope slide through an electroless deposition procedure. The surface of the slide was first selectively coated with a thin layer of sodium silicate through a micromolding in capillary technique provided by a poly(dimethylsiloxane) (PDMS) microchannel; this left a rough patterned area for the anchoring of catalytic particles. A metal layer was deposited on the pattern guided by these catalytic particles and was used as the working electrode. Factors influencing the fabrication procedure were discussed. The whole chip was built by reversibly sealing the slide to another PDMS layer with electrophoresis microchannels at room temperature. This approach eliminates the need of clean room facilities and expensive apparatus such as for vacuum deposition or sputtering and makes it possible to produce patterned electrodes suitable for ECD on microchip under ordinary chemistry laboratory conditions. Also once the micropattern is ready, it allows the researchers to rebuild the electrode in a short period of time when an electrode failure occurs. Copper and gold microelectrodes were fabricated by this technique. Glucose, dopamine, and catechol as model analytes were tested.
Resumo:
The oxamido-bridged heterobinuclear copper(II)-nickel(II) complex, [Cu(oxbe)Ni(phen)(2)]ClO4.3H(2)O (1) and homotrinuclear nickel(11) complex {[Ni(oxbe)](2)Ni(H2O)(2)}.2.5DMF (2) have been synthesized and characterized by means of elemental analysis, IR, EPR. and electronic spectra and magnetic susceptibility, where H(3)oxbe is dissymmetrical ligand N-benzoato-N'-(2-aminoethyl)ox-amido, phen = 1.10-phenanthroline, DMF = dimethylformamide. Complex I has an extended oxamido-bridged structure consisting of planar copper(II) and octahedral nickel(II) ions. The chi(M) and mu(eff) versus T plots of 1 is typical of an antiferromagnetically coupled Cu(II)-Ni(II,) pair with a spin-doublet ground state, and magnetic analysis leads to J = -57.1 cm(-1). The molecular structure of 2 is centrosymmetrical, with one octahedral nickel atom lying at an inversion center and two terminal Ni(II) atoms in approximately square planar environment. Through the hydrogen bonds and pi- pi stacking interactions, a 2D supramolecular structure is formed.
Resumo:
Reaction of salts of the 2,5-disubstituted amino-p-benzoquinone bridging ligand (la-e) with trans-bis(triphenylphosphane)phenylnickel(II) chloride results in the binuclear complexes 2a-e, which show high activities for ethylene polymerization without any cocatalysts. High-molecular-weight, moderately branched polyethylene of broad molecular-weight distribution was obtained.
Resumo:
[Ni(Ph)(PPh3)(N,O)] complexes containing phenyliminophenolato ligands (N,O) (1: N,O = A; 2: N,O = B; 3: N,O = Q 4: N,O = D; 5: N,O = E) have been synthesized and characterized. The molecular structure of 4 was determined by single-crystal X-ray analysis. Complexes 2-5 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization without the use of co-catalysts. The high ethylene polymerization activities of ca. 10(5) g.PE mol(-1) Ni.h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene could be accomplished by changing the ligand structures and reaction conditions. The self-immobilization of catalysts brings about a dramatic increase in the catalytic activities of ethylene polymerization.
Resumo:
A facile method for the synthesis of biphenyl polyimides, which involves the nickel-catalyzed coupling of aromatic dichlorides containing imide structure in the presence of zinc and triphenylphosphine, has been developed. The polymerizations proceeded smoothly under mild conditions and produced biphenyl polyimides with inherent viscosities of 0.13-0.98 dL/g. The polymerizations of bis(4-chlorophthalimide)s with bulky side substituents gave high molecular weight polymers. Low molecular weight polymers from bis(4-chlorophthalimide)s containing rigid diamine moieties and bis(3-chlorophthalimide)s were obtained because of the formations of polymer precipitate and cyclic oligoimides, respectively. The effects of various factors, such as amount of catalyst, solvent volume, ligand, reaction temperature, and time, on the polymerization were studied. The random copolymerization of two bis(chlorophthalimide)s in varying proportions produced medium molecular weight material. The TgS of prepared polyimides were observed at 245-311 degreesC, and the thermogravimetry of polymers showed 10% weight loss in nitrogen at 470-530 degreesC.
Resumo:
Neutral Ni(II) salicylaldiminato complexes activated with modified methylaluminoxane as catalysts were used for the vinylic polymerization of norbornene. Catalyst activities of up to 7.08 x 10(4) kg(pol)/(mol(Ni) (.) h) and viscosity-average molecular weights of polymer up to 1.5 x 10(6) g/mol were observed at optimum conditions. Polynorbornenes are amorphous, soluble in organic solvents, highly stable, and show glass-transition temperatures around 390 degreesC. Catalyst activity, polymer yield, and polymer molecular weight can be controlled over a wide range by the variation of the reaction parameters such as the Al/Ni ratio, monomer/catalyst ratio, monomer concentration, polymerization reaction temperature, and time.
Resumo:
A new family of self-immobilized ethylene polymerization catalysts, derived from neutral, single-component salicylaldiminato phenyl nickel complexes, is described.
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A nickel molybdenum phosphate, (NH3CH2CH2NH3)(4).(NH3CH2CH2NH2). Na .[Ni2Mo12O30(PO4)(HPO4)(4)(H2PO4)(3)]. 6H(2)O, invoicing molybdenum present in V oxidation, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a = 12,011(2), b = 14,612(3), c = 21.252(4) Angstrom, alpha = 80.54(2)degrees, beta = 83.10(2)degrees, gamma = 76.29(2)degrees, V = 3561.4(12) Angstrom(3), Z = 2, lambda(MoK alpha) = 0.71073 Angstrom (R(F) = 0.0529 for 9880 reflections), Data mere collected on a Siemens P4 diffractometer at 20 degrees C in the range of 1.75 degrees < theta < 23.02 degrees using the omega-scan technique. The structure was solved by direct methods using the program SHELXTL-93 and refined with the method of fun-matrix least-squares on F-2. The structure of the title compound may be considered to be two [Mo6O15(HPO4)(H2PO4)(3)](5-) units bonded together with a nickel atom, although several P-O groups are not protonated on account of coordination with a Na+ cation, The one-dimensional tunnels were formed in the solid of the title compound. A probe reaction of the oxidation of acetaldehyde with H2O2 using the title compound as catalyst was carried out in a liquid- solid system, showing that the title compound had high catalytic activity in the reaction, (C) 1999 Academic Press.
Resumo:
A new nickel (II)-cyanometallates modified on glassy carbon electrode was prepared by a new method and studied by cyclic voltammetry and in situ Fourier transform infrared (FTIR) spectroelectrochemistry. It was found that the NiHCF film existed in two forms: Ni2Fe(II)-(CN)(6) and M2NiFe(II)(CN)(6), Fe(CN)(3)(6-) codeposited in the NiHCF film existing in free cation or bridged-bond state depended on the property of the cations in electrolyte: in NaCl and LiCl solution, it is in bridges-bonded, but in HCl and KCl, it is free.
Resumo:
Reaction of [Ph(4)P]2WS4 With NiCl2 in methanol solution in the presence of NaOCH3 leads to the formation of [Ph(4)P](2) [S2W(mu-S)(2)Ni(S-2)] (I) A Similar reaction between (NH4)(2)WS4 and NiCl2 under O-2 atmosphere in the presence of Ph(4)PCl or (n)Bu(4)NCl affords [Ph(4)P](2)([(S-2)W(O)(mu-S)(2)]Ni-2] (IIa) and [(n)Bu(4)N](2)([(S-2)W(O)(mu-S)(2)]Ni-2} (IIb) Under argon the same reaction gives [Ph(4)P](2)[Ni(WS4)(2)] (IIIa) and [(n)Bu(4)N](2)[Ni(WS4)(2)] (IIIb). [Ph(4)P](2)[Ni(WOS3)(2)] (IV) and [Ph(4)P](2)[Ni(WO2S2)(2)] (V) can be prepared from the reaction of [Ph(4)P]2WOS3 and [Ph(4)P]2WO2S2 with NiCl2. Treatment of (NH4)(2)WS4 with CuCl in the presence of PPh(3) in boiling pyridine produces W(mu-S)(4)Cu-2(PPh(3))(3) (VI), which can further react with excess PPh(3) to give W(mu-S)(4)Cu-2(PPh(3))(4) . py (VII). Complex I crystallizes in the space group P2(1)/n with the cell parameters: a = 20.049(4), b = 17.010(4), c = 14.311(7) Angstrom; beta = 110.24(3)degrees and Z = 4; R = 0.058 for 4267 independent reflections. The structural study confirms that complex I contains two terminal sulfide ligands, two bridging sulfide ligands, a side-on disulfide ligand, and a planar central W(mu-S)(2)Ni four membered ring. Complex VII crystallizes in the space group C2/c with the cell parameters: a = 26.436(8), b = 20.542(6), c = 19.095(8) Angstrom; beta = 125.00(3)degrees and Z = 4; R = 0.080 for 3802 independent reflections. The structural study reveals a perfect linear arrangement of the three metal atoms Cu-W-Cu.
Resumo:
The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 were prepared and used as catalysts for the direct decomposition of NO. The catalysts were characterized by means of XRD, XPS, O-2-TPD, NO-TPD and chemical analysis. By comparing the physico-chemical properties and catalytic activity for NO decomposition, a conclusion could be drawn as follows. The direct decomposition of NO over perovskite and related mixed oxide catalysts follows a redox mechanism. The lower valent metal ions Ni2+ and disordered oxygen vacancies seem to be the active sites in the redox process. The oxygen vacancy plays an important role favorable for the adsorption and activation of NO molecules on one hand and on the other hand for increasing the mobility of lattice oxygen which is beneficial to the reproduction of active sites. The presence of oxygen vacancies is one of the indispensable factors to give the mixed oxides a steady activity for NO decomposition.
Resumo:
The binuclear complex [Ni(oxae)Ni(phen)2](ClO4)(2) . H2O (oxae=N,N'bis(2-aminoethyl) oxamido dianion, phen = 1, 10-phenanthroline) was prepared from the planar monomeric complex Ni(oxae) and characterized through analytical and spectroscopic measurements. The structure of [Ni(oxae)Ni(phen)(2)] (ClO4)2 . 3H(2)O was investigated by single-crystal X-ray analysis. The complex has an extended oxamido-bridged structure and consists of two nickel(II) ions, one of them in a square planar environment and another in a distorted octahedral environment. The Ni-Ni distance is 5.267 Angstrom.
Resumo:
The early stages of the electrodeposition of nickel on highly oriented pyrolytic graphite (HOPG) were investigated by in situ scanning tunnelling microscopy, scanning electron microscopy and electrochemical measurements. Experimental results showed that t