971 resultados para eggshell porosity and conductance
Resumo:
Cast Ai-Si alloys are widely used in the automotive, aerospace and general engineering industries due to their excellent combination of properties such as good castability, low coefficient of thermal expansion, high strength-to-weight ratio and good corrosion resistance. The present investigation is on the influence of alloying additions on the structure and properties of Ai-7Si-0.3Mg alloy. The primary objective of this present investigation is to study these beneficial effects of calcium on the structure and properties of Ai-7Si-0.3Mg-xFe alloys. The second objective of this work is to study the effects of Mn,Be and Sr addition as Fe neutralizers and also to study the interaction of Mn,Be,Sr and Ca in Ai-7Si-0.3Mg-xFe alloys. In this study the duel beneficial effects of Ca viz;modification and Fe-neutralization, comparison of the effects of Ca and Sr with common Fe neutralizers. The casting have been characterized with respect to their microstructure, %porosity and electrical conductivity, solidification behaviour and mechanical properties. One of the interesting observations in the present work is that a low level of calcium reduces the porosity compared to the untreated alloy. However higher level of calcium addition lead to higher porosity in the casting. An empirical analysis carried out for comparing the results of the present work with those of the other researchers on the effect of increasing iron content on UTS and % elongation of Ai-Si-Mg and Ai-Si-Cu alloys has shown a linear and an inverse first order polynomial relationships respectively.
Resumo:
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional- and shear-wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse-echo method. The measurements were made both in vacuum-dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin-impregnated polished thin sections, X-ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional- and shear-wave velocities (V-p and V-s, respectively) decrease with increasing porosity and that V-p decreases approximately twice as fast as V-s. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore-structure-dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot-Gassmann velocity values are greater than the measured velocity values due to the rock-fluid interaction. This is not accounted for in the Biot-Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time-average relationships overestimated the measured velocities even more than the Biot model.
Resumo:
There are currently concerns within some sugar industries that long-term monoculture has led to soil degradation and consequent yield decline. An investigation was conducted in Swaziland to assess the effects of fallowing and green manuring practices, over a seven-month period, on sugarcane yields and the physical properties of a poorly draining clay soil. In the subsequent first sugarcane crop after planting, yields were improved from 129 t ha(-1) under continuous sugarcane to 141-144 t ha(-1) after fallowing and green manuring, but there were no significant responses in the first and second ratoon crops. Also, in the first crop after planting, root length index increased from 3.5 km m(-2) under continuous sugarcane to 5.2-6.8 km m(-2) after fallowing, and improved rooting was still evident in the first ratoon crop where there had been soil drying during the fallow period. Soil bulk density, total porosity and water-holding capacity were not affected by the fallowing practices. However, air-filled porosity increased from 11% under continuous sugarcane to 16% after fallowing, and steady state ponded infiltration rates were increased from 0.61 mm h(-1) to 1.34 mm h(-1), but these improvements were no longer evident after a year back under sugarcane. Levels of soil organic matter were reduced in all cases, probably as a result of the tillage operations involved. In the plant crop, root length was well correlated with air-filled porosity, indicating the importance of improving belowground air supply for crop production on poorly draining clay soils.
Resumo:
In this pilot study water was extracted from samples of two Holocene stalagmites from Socotra Island, Yemen, and one Eemian stalagmite from southern continental Yemen. The amount of water extracted per unit mass of stalagmite rock, termed "water yield" hereafter, serves as a measure of its total water content. Based on direct correlation plots of water yields and δ18Ocalcite and on regime shift analyses, we demonstrate that for the studied stalagmites the water yield records vary systematically with the corresponding oxygen isotopic compositions of the calcite (δ18Ocalcite). Within each stalagmite lower δ18Ocalcite values are accompanied by lower water yields and vice versa. The δ18Ocalcite records of the studied stalagmites have previously been interpreted to predominantly reflect the amount of rainfall in the area; thus, water yields can be linked to drip water supply. Higher, and therefore more continuous drip water supply caused by higher rainfall rates, supports homogeneous deposition of calcite with low porosity and therefore a small fraction of water-filled inclusions, resulting in low water yields of the respective samples. A reduction of drip water supply fosters irregular growth of calcite with higher porosity, leading to an increase of the fraction of water-filled inclusions and thus higher water yields. The results are consistent with the literature on stalagmite growth and supported by optical inspection of thin sections of our samples. We propose that for a stalagmite from a dry tropical or subtropical area, its water yield record represents a novel paleo-climate proxy recording changes in drip water supply, which can in turn be interpreted in terms of associated rainfall rates.
Resumo:
The use of ceramic material as refractories in the manufacturing industry is a common practice worldwide. During usage, for example in the production of steel, these materials do experience severe working conditions including high temperatures, low pressures and corrosive environments. This results in lowered service lives and high consumptions of these materials. This, in turn, affects the productivity of the whole steel plant and thereby the cost. In order to investigate how the service life can be improved, studies have been carried out for refractories used in the inner lining of the steel ladles. More specifically, from the slag zone, where the corrosion is most severe. By combining thermodynamic simulations, plant trails and post-mortem studies of the refractories after service, vital information about the behaviour of the slagline refractories during steel refining and the causes of the accelerated wear in this ladle area has been achieved. The results from these studies show that the wear of the slagline refractories of the ladle is initiated at the preheating station, through reduction-oxidation reactions. The degree of the decarburization process is mostly dependent on the preheating fuel or the environment. For refractories without antioxidants, refractory decarburization is slower when coal gas is used in ladle preheating than when a mixture of oil and air is used. In addition, ladle preheating of the refractories without antioxidants leads to direct wear of the slagline refractories. This is due to the total loss of the matrix strength, which results in a sand-like product. Thermal chemical changes that take place in the slagline refractories are due to the MgO-C reaction as well as the formation of liquid phases from impurity oxides. In addition, the decrease in the system pressure during steel refining makes the MgO-C reaction take place at the steel refining temperatures. This reduces the refractory’s resistance to corrosion. This is a serious problem for both the magnesia-carbon and dolomite-carbon refractories. The studies of the reactions between the slagline refractories and the different slag compositions showed that slags rich in iron oxide lead mostly to the oxidation of carbon/graphite in the carbon-containing refractories. This leads to an increased porosity and wettability and therefore an enhanced penetration of slag into the refractory structure. If the slag contains high contents of alumina and or silica (such as the steel refining slag), reactions between the slag components and the dolomite-carbon refractory are promoted. This leads to the formation of low-temperature melting phases such as calcium-aluminates and silicates. The state of these reaction products during steel refining leads to an accelerated wear of the dolomite-carbon refractory. The main products of the reactions between the magnesia-carbon refractory and the steel refining slag are MgAl2O4 spinels, and calcium-aluminates, and silicates. Due to the good refractory properties of MgAl2O4 spinels, the slag corrosion resistance of the magnesiacarbon refractory is promoted.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An experiment was conduced to evaluate the inclusion of sunflower meal (SBM) in commercial layer diets formulated on total or digestible amino acids basis. One hundred forty-four 41-week-old Lohmann LSL layers were distributed in a completely randomized experimental design in a 2 x 4 factorial arrangement with three replications of six birds each. Treatments consisted of a combination of four SBM inclusion levels SBM(0%, 4%, 8%, and 12%) and feed formulation according two amino acid recommendations (total or digestible). The experimental period was divided into five periods of fourteen days. Performance parameters (egg production, feed intake, feed conversion, egg mass) were evaluated for each period. In the last two days of each period, three eggs per replication were collected to evaluate egg quality (Haugh units, specific gravity, egg weight, eggshell thickness, and eggshell percentage). Hens fed on total amino acid recommendation presented the highest values for egg weight. Diets formulated on digestible amino acids basis showed an improvement in eggshell percentage and egg specific gravity. SBM addition in commercial layer diets did not influence performance; however, increasing SBM dietary levels SBM improved eggshell quality.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An experiment was conducted to evaluate different commercial laying hen diets formulated based on recommendations for total and digestible amino acids. One hundred and twenty Lohmann LSL commercial laying hens aged 25 weeks were distributed in a completely randomized experimental design involving five replications of six birds in four treatments. Diet formulation on a total amino acid basis followed the recommendations of NRC (1994) and Rostagno et al. (2000), whereas formulation on digestible amino acids basis was according to Rostagno et al. (2000) and Degussa (1997) recommendations. The experimental period was divided into five periods of fourteen days. Performance parameters (egg production, feed intake, feed conversion, egg mass) were evaluated for each period, and on the last two days of each period, three eggs per replication were collected to evaluate egg quality parameters (Haugh unit, egg specific gravity, egg weight, eggshell thickness and percentage). Means were compared by orthogonal contrasts. Results on feed intake, egg production, egg mass, feed conversion and egg specific gravity showed that total amino acid recommendations promoted better bird responses than digestible amino acid recommendations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to follow-up the physiological variations in the development of the bone tissue, associating them with the egg production curve. This study was carried out in the facilities of the Faculdade de Medicina Veterinária e Zootecnia of the UNESP, Botucatu, Brazil. Twenty-three families of Ross broiler breeders were used, each family consisting of 13 females and 1 male, distributed in 23 pens of 5.0m² each. The management was that recommended by the genetic company manual (Agroceres Ross, 2003), with daily feeding until 6th week of age; and birds were fed according to a 5:2 schedule (5 days fed, 2 days of fasting) between 7 and 17 weeks of age, returning to daily feeding starting at 18 weeks of age. Birds did not receive afternoon calcium supplementation. on the fourth week of rearing, 84 females were removed for bone analyses of the right tibia and femur, using optical densitometry in radiographic images technique. These analyses were sequentially carried out in 4, 8, 12, 15, 20, 24, 30, 35, 42, 47, and 52 week-old birds. The egg production curve of the birds was followed-up and associated to bone mineral density results. For bone mineral density evaluation (BMD) birds were divided by weight categories as light, intermediate, or heavy within each data age. BMD values of the tibias were not influenced by weight range, but by the age at collection. on the other hand, interactions were found among femur BMD values and weight and age categories. There was no correlation between eggshell quality and femur BMD. A negative correlation (-0.15) was observed between tibia BMD and eggshell percentage. It was possible to conclude that the egg production has little influence on bone mineral density of the birds probably because there was no need of bone mineral mobilization during the production period, since the observed egg production was below that observed under commercial conditions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Sonohydrolysis of mixtures of tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS) with different TMOS/(TMOS + TEOS) molar ratio R was carried out to obtain similar to 2.0 x 10(-3) mol SiO2/cm(3) and similar to 86%-volume liquid phase wet gels. Aerogels were obtained by supercritical CO2 extraction in autoclave. The samples were analyzed by small-angle X-ray scattering (SAXS) and nitrogen adsorption. The structure of the wet gels can be described as a mass fractal structure with fractal dimension D similar to 2.2 and characteristic length increasing from similar to 4.6 nm for pure TEOS to similar to 6.4 nm for pure TMOS. A fraction of the porosity is eliminated with the supercritical process. The fundamental role of the TMOS/(TMOS + TEOS) molar ratio on the structure of the aerogels is to increase the porosity and the pore mean size as R changes from pure TEOS to pure TMOS. The supercritical process increases the mass fractal dimension and shortens the fractality domain in the mesopore region. A secondary structure appearing in the micropore region of the aerogels can be described as a mass/surface fractal structure with correlated mass fractal dimension D-m similar to 2.6 and surface fractal dimension D-s similar to 2.3. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO: Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm(-2)), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)