952 resultados para eddy covariance
Resumo:
This paper describes how the A -if) formulation may be applied to determine the losses in the stator duct spacers of large a.c. motors. The model is described in terms of its geometry and boundary conditions. The novel aspects of the application of the formulation to this problem are explained. These include the modelling of fixed currents sources (the stator windings), the location of the necessary cut surfaces and the determination of their magnetic scalar potential differences, and the implementation of periodic boundary conditions for vector variables. Results are presented showing how the duct spacer losses vary with load, and with the relative permeability of the spacer material. The effects of modelling iron nonlinearity, of both the spacer and the steel laminations, are also illustrated. © 1996 IEEE.
Resumo:
The Reynolds number influence on turbulent blocking effects by a rigid plane boundary is studied using direct numerical simulation (DNS). A new forcing method using 'simple model eddies' (Townsend 1976) for DNS of stationary homogeneous isotropic turbulence is proposed. A force field is obtained in real space by sprinkling many space-filling 'simple model eddies' whose centers are randomly but uniformly distributed in space and whose axes of rotation are random. The method is applied to a shear-free turbulent boundary layer over a rigid plane boundary and the blocking effects are investigated. The results show that stationary homogeneous isotropic turbulence is generated in real space using the present method. By using different model eddies with different sizes and rotation speeds, we could change the turbulence properties such as the integral and micro scales, the turbulent Reynolds number and the isotropy of turbulence. Turbulence intensities near the wall showed good agreements with the previous measurement and the linear analysis based on a rapid distortion theory (RDT). The splat effect (i.e., turbulence intensities of the components parallel to the boundary are amplified) occurs near the boundary and the viscous effect prohibits the splat effect at the quasi steady state at low Reynolds number.
Resumo:
Detached-eddy simulation of transonic flow past a thin section of a fan blade has been carried out. The inflow Mach number is 1.03, and a bow shock forms upstream of the blade. The shock (corresponding to an adjacent blade) impinges on the suction-side boundary layer which causes separation and rapid transition to turbulence. The boundary layer later re-attaches near the trailing edge. The pressure-side boundary layer transitions near the leading edge and remains attached. Mean surface pressure shows basic agreement with a steady RANS calculation; strong shock motion in the DES is the major cause of discrepancy. Surface pressure spectra are investigated, and low-frequency two-dimensional disturbances associated with the shock motion are dominant. Removing the two-dimensional component from the spectra, the pressure-side three-dimensional spectra reproduce the spectral shape given by a correlation for flat-plate boundary layer wall-pressure spectra developed by Goody. 1 The suction-side disturbances produce similar high- and intermediate-frequency scalings despite substantially different boundary layer development. Near-wake results show that disturbance kinetic energy peaks at the suction-side inflection point of the mean profile, and that the energy is concentrated at low frequencies relative to the near-trailing edge surface pressure. Copyright © 2009 by the authors.
Conditional Moment Closure/Large Eddy Simulation of the Delft-III Natural Gas Non-premixed Jet Flame