947 resultados para dynamic parameters identification
Resumo:
This paper discusses a new method of impedance control that has been successfully implemented on the master robot of a teleoperation system. The method involves calibrating the robot to quantify the effect of adjustable controller parameters on the impedances along its different axes. The empirical equations relating end-effector impedance to the controller's feedback gains are obtained by performing system identification tests along individual axes of the robot. With these equations, online control of end-effector stiffness and damping is possible without having to monitor joint torques or solving complex algorithms. Hard contact conditions and compliant interfaces have been effectively demonstrated on a telemanipulation test-bed using appropriate combinations of stiffness and damping settings obtained by this method.
Resumo:
We present some additions to a fuzzy variable radius niche technique called Dynamic Niche Clustering (DNC) (Gan and Warwick, 1999; 2000; 2001) that enable the identification and creation of niches of arbitrary shape through a mechanism called Niche Linkage. We show that by using this mechanism it is possible to attain better feature extraction from the underlying population.
Resumo:
This work provides a framework for the approximation of a dynamic system of the form x˙=f(x)+g(x)u by dynamic recurrent neural network. This extends previous work in which approximate realisation of autonomous dynamic systems was proven. Given certain conditions, the first p output neural units of a dynamic n-dimensional neural model approximate at a desired proximity a p-dimensional dynamic system with n>p. The neural architecture studied is then successfully implemented in a nonlinear multivariable system identification case study.
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
We develop a complex-valued (CV) B-spline neural network approach for efficient identification and inversion of CV Wiener systems. The CV nonlinear static function in the Wiener system is represented using the tensor product of two univariate B-spline neural networks. With the aid of a least squares parameter initialisation, the Gauss-Newton algorithm effectively estimates the model parameters that include the CV linear dynamic model coefficients and B-spline neural network weights. The identification algorithm naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. An accurate inverse of the CV Wiener system is then obtained, in which the inverse of the CV nonlinear static function of the Wiener system is calculated efficiently using the Gaussian-Newton algorithm based on the estimated B-spline neural network model, with the aid of the De Boor recursions. The effectiveness of our approach for identification and inversion of CV Wiener systems is demonstrated using the application of digital predistorter design for high power amplifiers with memory
Resumo:
A system identification algorithm is introduced for Hammerstein systems that are modelled using a non-uniform rational B-spline (NURB) neural network. The proposed algorithm consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples are utilized to demonstrate the efficacy of the proposed approach.
Resumo:
This paper introduces an architecture for identifying and modelling in real-time at a copper mine using new technologies as M2M and cloud computing with a server in the cloud and an Android client inside the mine. The proposed design brings up pervasive mining, a system with wider coverage, higher communication efficiency, better fault-tolerance, and anytime anywhere availability. This solution was designed for a plant inside the mine which cannot tolerate interruption and for which their identification in situ, in real time, is an essential part of the system to control aspects such as instability by adjusting their corresponding parameters without stopping the process.
Resumo:
Neurovascular coupling in response to stimulation of the rat barrel cortex was investigated using concurrent multichannel electrophysiology and laser Doppler flowmetry. The data were used to build a linear dynamic model relating neural activity to blood flow. Local field potential time series were subject to current source density analysis, and the time series of a layer IV sink of the barrel cortex was used as the input to the model. The model output was the time series of the changes in regional cerebral blood flow (CBF). We show that this model can provide excellent fit of the CBF responses for stimulus durations of up to 16 s. The structure of the model consisted of two coupled components representing vascular dilation and constriction. The complex temporal characteristics of the CBF time series were reproduced by the relatively simple balance of these two components. We show that the impulse response obtained under the 16-s duration stimulation condition generalised to provide a good prediction to the data from the shorter duration stimulation conditions. Furthermore, by optimising three out of the total of nine model parameters, the variability in the data can be well accounted for over a wide range of stimulus conditions. By establishing linearity, classic system analysis methods can be used to generate and explore a range of equivalent model structures (e.g., feed-forward or feedback) to guide the experimental investigation of the control of vascular dilation and constriction following stimulation.
Resumo:
We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.
Resumo:
A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.
Resumo:
If the source of the slow solar wind is a web comprising pseudostreamer belts connected to the streamer belt, then one expects the properties of interplanetary pseudostreamer flows to be similar to those of streamer flows. That expectation is tested with data from the slow wind preceding stream interfaces in stream interaction regions at 1 AU, where the interfaces separate what was originally slow and fast wind. Pseudostreamer cases were separated from streamer cases with the aid of the streamer identification tool developed by Owens et al. (2013), and superposed epoch analysis was performed to compare the patterns of a number of plasma and composition parameters. The results reveal that pseudostreamer flows have all of the slow-wind characteristics of streamer flows except that they are slightly less pronounced than streamer characteristics when compared to fast wind. The results are consistent with the concept that the solar wind displays a continuum of dynamic states rather than only slow and fast states.
Resumo:
The low- and high-latitude boundary layers of the earth's magnetosphere [low-latitude boundary layer (LLBL) and mantle] play important roles in transferring momentum and energy from the solar wind to the magnetosphere-ionosphere system. Particle precipitation, field-aligned current, auroral emission, ionospheric ion drift and ground magnetic perturbations are among the low-altitude parameters that show signatures of various plasma processes in the LLBL and the magnetopause current layer. Magnetic merging events, Kelvin-Helmholtz waves, and pressure pulses excited by the variable solar wind/magnetosheath plasma are examples of boundary phenomena that may be coupled to the ionosphere via field-aligned currents. Optical auroral observation, by photometry and all-sky TV cameras, is a unique technique for investigating the spatial and temporal structure of the electron precipitation associated with such phenomena. However, the distinction between the different boundary layer plasma populations cannot in general be unambiguously determined by optics alone. Additional information, such as satellite observations of particle boundaries and field-aligned currents, is needed in order to identify the plasma source(s) and the magnetosphere-ionosphere coupling mode(s). Two categories of auroral activity/structure in the vicinity of the polar cusp are discussed in this paper, based on combined ground and satellite data. In one case, the quasi-periodic sequence of auroral events at the polar cap boundary involves accelerated electrons (< 1 keV) moving poleward (< 1 km s-1) and azimuthally along the persistent cusp/cleft arc poleward boundary with velocities (< 4 km s-1), comparable to the local ionospheric ion drift during periods of southward IMF. A critical question is whether or not the optical events signify a corresponding plasma flow across the open/closed field line boundary in such cases. Near-simultaneous observations of magnetopause flux transfer events (FTEs) and such optical/ion drift events are reported. The reverse pattern of motion of discrete auroral forms is observed during positive interplanetary magnetic field (IMF) B(Z), i.e. equatorward motion into the cusp/cleft background arc from the poleward edge. Combined satellite and ground-based information for the latter cases indicate a source mechanism, poleward of the cusp at the high-latitude magnetopause or plasma mantle, giving rise to strong momentum transfer and electron precipitation structures within a approximately 200 km-wide latitudinal zone at the cusp/cleft poleward boundary. The striking similarities of auroral electrodynamics in the cleft/mantle region during northward and southward IMF indicate that a qualitatively similar solar wind-magnetosphere coupling mode is operating. It is suggested that, in both cases, the discrete auroral forms represent temporal/spatial structure of larger-scale convection over the polar magnetosphere.
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
Break crops and multi-crop rotations are common in arable farm management, and the soil quality inherited from a previous crop is one of the parameters that determine the gross margin that is achieved with a given crop from a given parcel of land. In previous work we developed a dynamic economic model to calculate the potential yield and gross margin of a set of crops grown in a selection of typical rotation scenarios, and we reported use of the model to calculate coexistence costs for GM maize grown in a crop rotation. The model predicts economic effects of pest and weed pressures in monthly time steps. Validation of the model in respect of specific traits is proceeding as data from trials with novel crop varieties is published. Alongside this aspect of the validation process, we are able to incorporate data representing the economic impact of abiotic stresses on conventional crops, and then use the model to predict the cumulative gross margin achievable from a sequence of conventional crops grown at varying levels of abiotic stress. We report new progress with this aspect of model validation. In this paper, we report the further development of the model to take account of abiotic stress arising from drought, flood, heat or frost; such stresses being introduced in addition to variable pest and weed pressure. The main purpose is to assess the economic incentive for arable farmers to adopt novel crop varieties having multiple ‘stacked’ traits introduced by means of various biotechnological tools available to crop breeders.