487 resultados para duality
Resumo:
We dimensionally reduce the ABJM model, obtaining a two-dimensional theory that can be thought of as a 'master action'. This encodes information about both T- and S-duality, i.e. describes fundamental (F1) and D-strings (D1) in 9 and 10 dimensions. The Higgsed theory at large VEV, (v) over tilde, and large k yields D1-brane actions in 9d and 10d, depending on which auxiliary fields are integrated out. For N = 1 there is a map to a Green-Schwarz string wrapping a nontrivial circle in C(4)/Z(k).
Resumo:
We define a cohomological invariant E(G, S, M) where G is a group, S is a non empty family of (not necessarily distinct) subgroups of infinite index in G and M is a F2G-module (F2 is the field of two elements). In this paper we are interested in the special case where the family of subgroups consists of just one subgroup, and M is the F2G-module F2(G/S). The invariant E(G, {S}, F2(G/S)) will be denoted by E(G, S). We study the relations of this invariant with other ends e(G) , e(G, S) and e(G, S), and some results are obtained in the case where G and S have certain properties of duality.
Resumo:
The use of master actions to prove duality at quantum level becomes cumbersome if one of the dual fields interacts nonlinearly with other fields. This is the case of the theory considered here consisting of U(1) scalar fields coupled to a self-dual field through a linear and a quadratic term in the self-dual field. Integrating perturbatively over the scalar fields and deriving effective actions for the self-dual and the gauge field we are able to consistently neglect awkward extra terms generated via master action and establish quantum duality up to cubic terms in the coupling constant. The duality holds for the partition function and some correlation functions. The absence of ghosts imposes restrictions on the coupling with the scalar fields.
Resumo:
In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated photon masses in 1+1 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treatments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian models in terms of θ vacua are also addressed.
Resumo:
Pasti, Sorokin, and Tonin have recently constructed manifestly Lorentz-invariant actions for self-dual field strengths and for Maxwell fields with manifest electromagnetic duality. Using the method of Deser et al., we generalize these actions in the presence of sources.
Resumo:
Using an infinite number of fields, we construct actions for D = 4 self-dual Yang-Mills with manifest Lorentz invariance and for D = 10 super-Yang-Mills with manifest super-Poincaré invariance. These actions are generalizations of the covariant action for the D = 2 chiral boson which was first studied by McClain, Wu, Yu and Wotzasek.
Resumo:
In this work we explore the consequences of dimensional reduction of the 3D Maxwell-Chern-Simons and some related models. A connection between topological mass generation in 3D and mass generation according to the Schwinger mechanism in 2D is obtained. In addition, a series of relationships is established by resorting to dimensional reduction and duality interpolating transformations. Non-Abelian generalizations are also pointed out.
Resumo:
In this paper, we consider a vector optimization problem where all functions involved are defined on Banach spaces. We obtain necessary and sufficient criteria for optimality in the form of Karush-Kuhn-Tucker conditions. We also introduce a nonsmooth dual problem and provide duality theorems.
Resumo:
In the present paper we introduce a hierarchical class of self-dual models in three dimensions, inspired in the original self-dual theory of Towsend-Pilch-Nieuwenhuizen. The basic strategy is to explore the powerful property of the duality transformations in order to generate a new field. The generalized propagator can be written in terms of the primitive one (first order), and also the respective order and disorder correlation functions. Some conclusions about the charge screening and magnetic flux were established. ©1999 The American Physical Society.
Resumo:
We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
An invex constrained nonsmooth optimization problem is considered, in which the presence of an abstract constraint set is possibly allowed. Necessary and sufficient conditions of optimality are provided and weak and strong duality results established. Following Geoffrion's approach an invex nonsmooth alternative theorem of Gordan type is then derived. Subsequently, some applications on multiobjective programming are then pursued. © 2000 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Resumo:
Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute M = 4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tree amplitudes reproduce the D-instanton computations of maximal degree in Witten's model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity transformations which exchange MHV and googly amplitudes. Since the string field theory action is gauge-invariant and reproduces the correct cubic super-Yang-Mills interactions, it provides strong support for the conjecture that the string theory correctly computes N-point super-Yang-Mills tree amplitudes. © SISSA/ISAS 2004.
Resumo:
A ten-dimensional super-Poincaré covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincaré covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and and to construct a suitable b ghost. A super-Poincaré covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N < 4, confirming the perturbative finiteness of superstring theory. One can also prove the Type IIB S-duality conjecture that R4 terms in the effective action receive no perturbative contributions above one loop. © SISSA/ISAS 2004.
Resumo:
We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach. © SISSA 2006.
Resumo:
This paper proposes a methodology for edge detection in digital images using the Canny detector, but associated with a priori edge structure focusing by a nonlinear anisotropic diffusion via the partial differential equation (PDE). This strategy aims at minimizing the effect of the well-known duality of the Canny detector, under which is not possible to simultaneously enhance the insensitivity to image noise and the localization precision of detected edges. The process of anisotropic diffusion via thePDE is used to a priori focus the edge structure due to its notable characteristic in selectively smoothing the image, leaving the homogeneous regions strongly smoothed and mainly preserving the physical edges, i.e., those that are actually related to objects presented in the image. The solution for the mentioned duality consists in applying the Canny detector to a fine gaussian scale but only along the edge regions focused by the process of anisotropic diffusion via the PDE. The results have shown that the method is appropriate for applications involving automatic feature extraction, since it allowed the high-precision localization of thinned edges, which are usually related to objects present in the image. © Nauka/Interperiodica 2006.