992 resultados para driving simulation
Resumo:
Potential to strengthen a commitment to intervene within a friendship group: – all knew the other passengers, – 3 in 4 discussed intervening with other passengers, – expectations of friends was a key predictive factor. - young women have potential and willingness to intervene in their friends’ drink driving behaviour - majority of campaigns and strategies to reduce alcohol related crashes target the driver however it is arguable that some strategies should target the young female passenger.
Resumo:
Semiconductor epitaxial nanostructures have been recently proposed as the key building blocks of many innovative applications in materials science and technology. To bring their tremendous potential to fruition, a fine control of nanostructure size and placement is necessary. We present a detailed investigation of the self-ordering process in the prototype case of Ge/Si heteroepitaxy. Starting from a bottom-up strategy (step-bunching instabilities), our analysis moves to lithographic techniques (scanning tunneling lithography, nanomechanical stamping, focused ion beam patterning) with the aim of developing a hybrid approach in which the exogenous intervention is specifically designed to suit and harness the natural self-organization dynamics of the system.
Resumo:
Background: Trauma resulting from traffic crashes poses a significant problem in highly motorised countries. Over a million people worldwide are killed annually and 50 million are critically injured as a result of traffic collisions. In Australia, road crashes cost an average of $17 billion annually in personal loss of income and quality of life, organisational losses in productivity and workplace quality, and health care costs. Driver aggression has been identified as a key factor contributing to crashes, and many motorists report experiencing mild forms of aggression (e.g., rude gestures, horn honking). However despite this concern, driver aggression has received relatively little attention in empirical research, and existing research has been hampered by a number of methodological and conceptual shortcomings. Specifically, there has been substantial disagreement regarding what constitutes aggressive driving and a failure to examine both the situational factors and the emotional and cognitive processes underlying driver aggression. To enhance current understanding of aggressive driving, a model of driver aggression that highlights the cognitive and emotional processes at play in aggressive driving incidents is proposed. Aims: The research aims to improve current understanding of the complex nature of driver aggression by testing and refining a model of aggressive driving that incorporates the person-related and situational factors and the cognitive and emotional appraisal processes fundamental to driver aggression. In doing so, the research will assist to provide a clear definition of what constitutes aggressive driving, assist to identify on-road incidents that trigger driver aggression, and identify the emotional and cognitive appraisal processes that underlie driver aggression. Methods: The research involves three studies. Firstly, to contextualise the model and explore the cognitive and emotional aspects of driver aggression, a diary-based study using self-reports of aggressive driving events will be conducted with a general population of drivers. This data will be supplemented by in-depth follow-up interviews with a sub-sample of participants. Secondly, to test generalisability of the model, a large sample of drivers will be asked to respond to video-based scenarios depicting driving contexts derived from incidents identified in Study 1 as inciting aggression. Finally, to further operationalise and test the model an advanced driving simulator will be used with sample of drivers. These drivers will be exposed to various driving scenarios that would be expected to trigger negative emotional responses. Results: Work on the project has commenced and progress on the first study will be reported.
Resumo:
Within Australia, motor vehicle injury is the leading cause of hospital admissions and fatalities. Road crash data reveals that among the factors contributing to crashes in Queensland, speed and alcohol continue to be overrepresented. While alcohol is the number one contributing factor to fatal crashes, speeding also contributes to a high proportion of crashes. Research indicates that risky driving is an important contributor to road crashes. However, it has been debated whether all risky driving behaviours are similar enough to be explained by the same combination of factors. Further, road safety authorities have traditionally relied upon deterrence based countermeasures to reduce the incidence of illegal driving behaviours such as speeding and drink driving. However, more recent research has focussed on social factors to explain illegal driving behaviours. The purpose of this research was to examine and compare the psychological, legal, and social factors contributing to two illegal driving behaviours: exceeding the posted speed limit and driving when over the legal blood alcohol concentration (BAC) for the drivers licence type. Complementary theoretical perspectives were chosen to comprehensively examine these two behaviours including Akers’ social learning theory, Stafford and Warr’s expanded deterrence theory, and personality perspectives encompassing alcohol misuse, sensation seeking, and Type-A behaviour pattern. The program of research consisted of two phases: a preliminary pilot study, and the main quantitative phase. The preliminary pilot study was undertaken to inform the development of the quantitative study and to ensure the clarity of the theoretical constructs operationalised in this research. Semi-structured interviews were conducted with 11 Queensland drivers recruited from Queensland Transport Licensing Centres and Queensland University of Technology (QUT). These interviews demonstrated that the majority of participants had engaged in at least one of the behaviours, or knew of someone who had. It was also found among these drivers that the social environment in which both behaviours operated, including family and friends, and the social rewards and punishments associated with the behaviours, are important in their decision making. The main quantitative phase of the research involved a cross-sectional survey of 547 Queensland licensed drivers. The aim of this study was to determine the relationship between speeding and drink driving and whether there were any similarities or differences in the factors that contribute to a driver’s decision to engage in one or the other. A comparison of the participants self-reported speeding and self-reported drink driving behaviour demonstrated that there was a weak positive association between these two behaviours. Further, participants reported engaging in more frequent speeding at both low (i.e., up to 10 kilometres per hour) and high (i.e., 10 kilometres per hour or more) levels, than engaging in drink driving behaviour. It was noted that those who indicated they drove when they may be over the legal limit for their licence type, more frequently exceeded the posted speed limit by 10 kilometres per hour or more than those who complied with the regulatory limits for drink driving. A series of regression analyses were conducted to investigate the factors that predict self-reported speeding, self-reported drink driving, and the preparedness to engage in both behaviours. In relation to self-reported speeding (n = 465), it was found that among the sociodemographic and person-related factors, younger drivers and those who score high on measures of sensation seeking were more likely to report exceeding the posted speed limit. In addition, among the legal and psychosocial factors it was observed that direct exposure to punishment (i.e., being detected by police), direct punishment avoidance (i.e., engaging in an illegal driving behaviour and not being detected by police), personal definitions (i.e., personal orientation or attitudes toward the behaviour), both the normative and behavioural dimensions of differential association (i.e., refers to both the orientation or attitude of their friends and family, as well as the behaviour of these individuals), and anticipated punishments were significant predictors of self-reported speeding. It was interesting to note that associating with significant others who held unfavourable definitions towards speeding (the normative dimension of differential association) and anticipating punishments from others were both significant predictors of a reduction in self-reported speeding. In relation to self-reported drink driving (n = 462), a logistic regression analysis indicated that there were a number of significant predictors which increased the likelihood of whether participants had driven in the last six months when they thought they may have been over the legal alcohol limit. These included: experiences of direct punishment avoidance; having a family member convicted of drink driving; higher levels of Type-A behaviour pattern; greater alcohol misuse (as measured by the AUDIT); and the normative dimension of differential association (i.e., associating with others who held favourable attitudes to drink driving). A final logistic regression analysis examined the predictors of whether the participants reported engaging in both drink driving and speeding versus those who reported engaging in only speeding (the more common of the two behaviours) (n = 465). It was found that experiences of punishment avoidance for speeding decreased the likelihood of engaging in both speeding and drink driving; whereas in the case of drink driving, direct punishment avoidance increased the likelihood of engaging in both behaviours. It was also noted that holding favourable personal definitions toward speeding and drink driving, as well as higher levels of on Type-A behaviour pattern, and greater alcohol misuse significantly increased the likelihood of engaging in both speeding and drink driving. This research has demonstrated that the compliance with the regulatory limits was much higher for drink driving than it was for speeding. It is acknowledged that while speed limits are a fundamental component of speed management practices in Australia, the countermeasures applied to both speeding and drink driving do not appear to elicit the same level of compliance across the driving population. Further, the findings suggest that while the principles underpinning the current regime of deterrence based countermeasures are sound, current enforcement practices are insufficient to force compliance among the driving population, particularly in the case of speeding. Future research should further examine the degree of overlap between speeding and drink driving behaviour and whether punishment avoidance experiences for a specific illegal driving behaviour serve to undermine the deterrent effect of countermeasures aimed at reducing the incidence of another illegal driving behaviour. Furthermore, future work should seek to understand the factors which predict engaging in speeding and drink driving behaviours at the same time. Speeding has shown itself to be a pervasive and persistent behaviour, hence it would be useful to examine why road safety authorities have been successful in convincing the majority of drivers of the dangers of drink driving, but not those associated with speeding. In conclusion, the challenge for road safety practitioners will be to convince drivers that speeding and drink driving are equally risky behaviours, with the ultimate goal to reduce the prevalence of both behaviours.
Resumo:
In recent years, the advent of new tools for musculoskeletal simulation has increased the potential for significantly improving the ergonomic design process and ergonomic assessment of design. In this paper we investigate the use of one such tool, ‘The AnyBody Modeling System’, applied to solve a one-parameter and yet, complex ergonomic design problem. The aim of this paper is to investigate the potential of computer-aided musculoskeletal modelling in the ergonomic design process, in the same way as CAE technology has been applied to engineering design.
Resumo:
In recent years, car club and racing websites and forums have become an increasingly popular way for car enthusiasts to access racing and car club news, chat-rooms and message boards. However, no North American research has been found that has examined opinions and driving experiences of car and racing enthusiasts. The purpose of this study was to examine car club members’ opinions about and experiences with various aspects of driving, road safety and traffic legislation, with a particular focus on street racing. A web-based questionnaire (Survey Monkey) was developed using the expert panel method and was primarily based on validated instruments or questions that were developed from other surveys. The questionnaire included: 1) driver concerns regarding traffic safety issues and legislation; 2) attitudes regarding various driving activities; 3) leisure-time activities, including club activities; 4) driving experiences, including offences and collisions; and 5) socio-demographic questions. The survey was pre- tested and piloted. Electronic information letters were sent out to an identified list of car clubs and forums situated in southern Ontario. Car club participants were invited to fill out the questionnaire. This survey found that members of car clubs share similar concerns regarding various road safety issues with samples of Canadian drivers, although a smaller percentage of car club members are concerned about speeding-related driving. Car club members had varied opinions regarding Ontario’s Street Racers, Stunt and Aggressive Drivers Legislation. The respondents agreed the most with the new offences regarding not sitting in the driver’s seat, having a person in the trunk, or driving as close as possible to another vehicle, pedestrian or object on or near the highway without a reason. The majority disagreed with police powers of impoundment and on-the-spot licence suspensions. About three quarters of respondents reported no collisions or police stops for traffic offences in the past five years. Of those who had been stopped, the most common offence was reported as speeding. This study is the first in Canada to examine car club members’ opinions about and experiences with various aspects of driving, road safety and traffic legislation. Given the ubiquity of car clubs and fora in Canada, insights on members’ opinions and practices provide important information to road safety researchers.
Resumo:
When compared with other arthoplasties, Total Ankle Joint Replacement (TAR) is much less successful. Attempts to remedy this situation by modifying the implant design, for example by making its form more akin to the original ankle anatomy, have largely met with failure. One of the major obstacles is a gap in current knowledge relating to ankle joint force. Specifically this is the lack of reliable data quantifying forces and moments acting on the ankle, in both the healthy and diseased joints. The limited data that does exist is thought to be inaccurate [1] and is based upon simplistic two dimensional discrete and outdated techniques.
Resumo:
Purpose. The Useful Field of View (UFOV(R)) test has been shown to be highly effective in predicting crash risk among older adults. An important question which we examined in this study is whether this association is due to the ability of the UFOV to predict difficulties in attention-demanding driving situations that involve either visual or auditory distracters. Methods. Participants included 92 community-living adults (mean age 73.6 +/- 5.4 years; range 65-88 years) who completed all three subtests of the UFOV involving assessment of visual processing speed (subtest 1), divided attention (subtest 2), and selective attention (subtest 3); driving safety risk was also classified using the UFOV scoring system. Driving performance was assessed separately on a closed-road circuit while driving under three conditions: no distracters, visual distracters, and auditory distracters. Driving outcome measures included road sign recognition, hazard detection, gap perception, time to complete the course, and performance on the distracter tasks. Results. Those rated as safe on the UFOV (safety rating categories 1 and 2), as well as those responding faster than the recommended cut-off on the selective attention subtest (350 msec), performed significantly better in terms of overall driving performance and also experienced less interference from distracters. Of the three UFOV subtests, the selective attention subtest best predicted overall driving performance in the presence of distracters. Conclusions. Older adults who were rated as higher risk on the UFOV, particularly on the selective attention subtest, demonstrated poorest driving performance in the presence of distracters. This finding suggests that the selective attention subtest of the UFOV may be differentially more effective in predicting driving difficulties in situations of divided attention which are commonly associated with crashes.
Resumo:
In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in wide spectrum areas, ranging from non-destructive testing for the detection of materials defects to monitoring of microeismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary/longitudinal waves), S waves (shear/transverse waves) and Rayleight (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use the acoustic emission technique for accurate identification of source location, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.
Resumo:
The subtalar joint has been presumed to account for most of the pathologic motion in the foot and ankle, but research has shown that motion at other foot joints is greater than traditionally expected. Although recent research demonstrates the complexity of the kinematic variables in the foot and ankle, it still fails to expand our knowledge of the role of the musculotendinous structures in the biomechanics of the foot and ankle and how this is affected by in-shoe orthoses. The aim of this study was to simulate the effect of in-shoe foot orthoses by manipulation of the ground reaction force (GRF) components and centre of pressure (CoP) to demonstrate the resultant effect on muscle force in selected muscles during both the rearfoot loading response and stance phase of the gait cycle. We found that any medial wedge increases ankle joint load during gait cycle, while a lateral wedge decreases the joint load during the stance phase.
Resumo:
Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.
Resumo:
The impact of weather on traffic and its behavior is not well studied in literature primarily due to lack of integrated traffic and weather data. Weather can significant effect the traffic and traffic management measures developed for fine weather might not be optimal for adverse weather. Simulation is an efficient tool for analyzing traffic management measures even before their actual implementation. Therefore, in order to develop and test traffic management measures for adverse weather condition we need to first analyze the effect of weather on fundamental traffic parameters and thereafter, calibrate the simulation model parameters in order to simulate the traffic under adverse weather conditions. In this paper we first, analyses the impact of weather on motorway traffic flow and drivers’ behaviour with traffic data from Swiss motorways and weather data from MeteoSuisse. Thereafter, we develop methodology to calibrate a microscopic simulation model with the aim to utilize the simulation model for simulating traffic under adverse weather conditions. Here, study is performed using AIMSUN, a microscopic traffic simulator.
Resumo:
China has experienced an extraordinary level of economic development since the 1990s, following excessive competition between different regions. This has resulted in many resource and environmental problems. Land resources, for example, are either abused or wasted in many regions. The strategy of development priority zoning (DPZ), proposed by the Chinese National 11th Five-Year Plan, provides an opportunity to solve these problems by coordinating regional development and protection. In line with the rational utilization of land, it is proposed that the DPZ strategy should be integrated with regional land use policy. As there has been little research to date on this issue, this paper introduces a system dynamic (SD) model for assessing land use change in China led by the DPZ strategy. Land use is characterized by the prioritization of land development, land utilization, land harness and land protection (D-U-H-P). By using the Delphi method, a corresponding suitable prioritization of D-U-H-P for the four types of DPZ, including optimized development zones (ODZ), key development zones (KDZ), restricted development zones (RDZ), and forbidden development zones (FDZ) are identified. Suichang County is used as a case study in which to conduct the simulation of land use change under the RDZ strategy. The findings enable a conceptualization to be made of DPZ-led land use change and the identification of further implications for land use planning generally. The SD model also provides a potential tool for local government to combine DPZ strategy at the national level with land use planning at the local level.
Resumo:
The future vehicle navigation for safety applications requires seamless positioning at the accuracy of sub-meter or better. However, standalone Global Positioning System (GPS) or Differential GPS (DGPS) suffer from solution outages while being used in restricted areas such as high-rise urban areas and tunnels due to the blockages of satellite signals. Smoothed DGPS can provide sub-meter positioning accuracy, but not the seamless requirement. A disadvantage of the traditional navigation aids such as Dead Reckoning and Inertial Measurement Unit onboard vehicles are either not accurate enough due to error accumulation or too expensive to be acceptable by the mass market vehicle users. One of the alternative technologies is to use the wireless infrastructure installed in roadside to locate vehicles in regions where the Global Navigation Satellite Systems (GNSS) signals are not available (for example: inside tunnels, urban canyons and large indoor car parks). The examples of roadside infrastructure which can be potentially used for positioning purposes could include Wireless Local Area Network (WLAN)/Wireless Personal Area Network (WPAN) based positioning systems, Ultra-wide band (UWB) based positioning systems, Dedicated Short Range Communication (DSRC) devices, Locata’s positioning technology, and accurate road surface height information over selected road segments such as tunnels. This research reviews and compares the possible wireless technologies that could possibly be installed along roadside for positioning purposes. Models and algorithms of integrating different positioning technologies are also presented. Various simulation schemes are designed to examine the performance benefits of united GNSS and roadside infrastructure for vehicle positioning. The results from these experimental studies have shown a number of useful findings. It is clear that in the open road environment where sufficient satellite signals can be obtained, the roadside wireless measurements contribute very little to the improvement of positioning accuracy at the sub-meter level, especially in the dual constellation cases. In the restricted outdoor environments where only a few GPS satellites, such as those with 45 elevations, can be received, the roadside distance measurements can help improve both positioning accuracy and availability to the sub-meter level. When the vehicle is travelling in tunnels with known heights of tunnel surfaces and roadside distance measurements, the sub-meter horizontal positioning accuracy is also achievable. Overall, simulation results have demonstrated that roadside infrastructure indeed has the potential to provide sub-meter vehicle position solutions for certain road safety applications if the properly deployed roadside measurements are obtainable.
Resumo:
The demand for high-speed data services for portable device has become a driving force for development of advanced broadband access technologies. Despite recent advances in broadband wireless technologies, there remain a number of critical issues to be resolved. One of the major concerns is the implementation of compact antennas that can operate in a wide frequency band. Spiral antenna has been used extensively for broadband applications due to its planar structure, wide bandwidth characteristics and circular polarisation. However, the practical implementation of spiral antennas is challenged by its high input characteristic impedance, relatively low gain and the need for balanced feeding structures. Further development of wideband balanced feeding structures for spiral antennas with matching impedance capabilities remain a need. This thesis proposes three wideband feeding systems for spiral antennas which are compatible with wideband array antenna geometries. First, a novel tapered geometry is proposed for a symmetric coplanar waveguide (CPW) to coplanar strip line (CPS) wideband balun. This balun can achieve the unbalanced to balanced transformation while matching the high input impedance of the antenna to a reference impedance of 50 . The discontinuity between CPW and CPS is accommodated by using a radial stub and bond wires. The bandwidth of the balun is improved by appropriately tapering the CPW line instead of using a stepped impedance transformer. Next, the tapered design is applied to an asymmetric CPW to propose a novel asymmetric CPW to CPS wideband balun. The use of asymmetric CPW does away with the discontinuities between CPW and CPS without having to use a radial stub or bond wires. Finally, a tapered microstrip line to parallel striplines balun is proposed. The balun consists of two sections. One section is the parallel striplines which are connected to the antenna, with the impedance of balanced line equal to the antenna input impedance. The other section consists of a microstrip line where the width of the ground plane is gradually reduced to eventually resemble a parallel stripline. The taper accomplishes the mode and impedance transformation. This balun has significantly improved bandwidth characteristics. Characteristics of proposed feeding structures are measured in a back-to-back configuration and compared to simulated results. The simulated and measured results show the tapered microstrip to parallel striplines balun to have more than three octaves of bandwidth. The tapered microstrip line to parallel striplines balun is integrated with a single Archimedean spiral antenna and with an array of spiral antennas. The performance of the integrated structures is simulated with the aid of electromagnetic simulation software, and results are compared to measurements. The back-to-back microstrip to parallel strip balun has a return loss of better than 10 dB over a wide bandwidth from 1.75 to 15 GHz. The performance of the microstrip to parallel strip balun was validated with the spiral antennas. The results show the balun to be an effective mean of feeding network with a low profile and wide bandwidth (2.5 to 15 GHz) for balanced spiral antennas.