940 resultados para digestive tract endoscopy
Resumo:
Background Australian Indigenous children are the only population worldwide to receive the 7-valent pneumococcal conjugate vaccine (7vPCV) at 2, 4, and 6 months of age and the 23-valent pneumococcal polysaccharide vaccine (23vPPV) at 18 months of age. We evaluated this program's effectiveness in reducing the risk of hospitalization for acute lower respiratory tract infection (ALRI) in Northern Territory (NT) Indigenous children aged 5-23 months. Methods We conducted a retrospective cohort study involving all NT Indigenous children born from 1 April 2000 through 31 October 2004. Person-time at-risk after 0, 1, 2, and 3 doses of 7vPCV and after 0 and 1 dose of 23vPPV and the number of ALRI following each dose were used to calculate dose-specific rates of ALRI for children 5-23 months of age. Rates were compared using Cox proportional hazards models, with the number of doses of each vaccine serving as time-dependent covariates. Results There were 5482 children and 8315 child-years at risk, with 2174 episodes of ALRI requiring hospitalization (overall incidence, 261 episodes per 1000 child-years at risk). Elevated risk of ALRI requiring hospitalization was observed after each dose of the 7vPCV vaccine, compared with that for children who received no doses, and an even greater elevation in risk was observed after each dose of the 23vPPV ( adjusted hazard ratio [HR] vs no dose, 1.39; 95% confidence interval [CI], 1.12-1.71;). Risk was highest among children Pp. 002 vaccinated with the 23vPPV who had received < 3 doses of the 7vPCV (adjusted HR, 1.81; 95% CI, 1.32-2.48). Conclusions Our results suggest an increased risk of ALRI requiring hospitalization after pneumococcal vaccination, particularly after receipt of the 23vPPV booster. The use of the 23vPPV booster should be reevaluated.
Resumo:
Background: Mitomycin C and etoposide have both demonstrated activity against gastric carcinoma. Etoposide is a topoisomerase II inhibitor with evidence for phase-specific and schedule-dependent activity. Patients and method. Twenty-eight consecutive patients with advanced upper gastrointestinal adenocarcinoma were treated with intravenous (i.v.) bolus mitomycin C 6 mg/m2 on day 1 every 21 days to a maximum of four courses. Oral etoposide capsules 50 mg b.i.d. (or 35 mg b.i.d. liquid) were administered days 1 to 10 extending to 14 days in subsequent courses if absolute neutrophil count >1.5 x 109/l on day 14 of first course, for up to six courses. Results: Twenty-six patients were assessed for response of whom 12 had measurable disease and 14 evaluable disease. Four patients had a documented response (one complete remission, three partial remissions) with an objective response rate of 15% (95% confidence interval (95% CI) 4%-35%). Eight patients had stable disease and 14 progressive disease. The median survival was six months. The schedule was well tolerated with no treatment-related deaths. Nine patients experienced leucopenia (seven grade II and two grade III). Nausea and vomiting (eight grade II, one grade III), fatigue (eight grade II, two grade III) and anaemia (seven grade II, two grade III) were the predominant toxicities. Conclusion: This out-patient schedule is well tolerated and shows modest activity in the treatment of advanced upper gastrointestinal adenocarcinoma. Further studies using protracted schedules of etoposide both orally and as infusional treatment should be developed.
Resumo:
PROBLEM Estradiol regulates chemokine secretion from uterine epithelial cells, but little is known about estradiol regulation in vivo or the role of estrogen receptors (ERs). METHOD CCL20 and CXCL1 present in reproductive washes following treatment with selective estrogen receptor modulators (SERMs) were compared with that during estrous and following estradiol-treated ovariectomized BALB/c mice. Cellular regulation was determined using isolated vaginal and uterine epithelial/stromal cells in vitro. RESULTS Uterine and vaginal chemokine secretion is cyclically regulated with CCL20 at low levels but CXCL1 at high levels during high estradiol, generally mimicking estradiol effect in vivo. ERα but not ERβ regulated CCL20/CXCL1 secretion by uterine epithelial cells in vitro and vaginal CCL20 in vivo. Estradiol/SERMs failed to alter uterine CCL20 secretion in ovariectomized mice. Diminished uterine epithelial ERα staining following ovariectomy corresponded with estradiol unresponsiveness of uterine tissue. CONCLUSION Estrogen receptors α regulates CCL20/CXCL1 secretion in the female reproductive tract, and ERα antagonists directly oppose the regulation by estradiol. Understanding ER-mediated antimicrobial chemokine expression is important to elucidate cyclic susceptibility to sexually transmitted pathogens.
Resumo:
The studies presented in this review explore three distinct areas with potential for inhibiting HIV infection in women. Based on emerging information from the physiology, endocrinology and immunology of the female reproductive tract (FRT), we propose unique 'works in progress' for protecting women from HIV. Various aspects of FRT immunity are suppressed by estradiol during the menstrual cycle, making women more susceptible to HIV infection. By engineering commensal Lactobacillus to secrete the anti-HIV molecule Elafin as estradiol levels increase, women could be protected from HIV infection. Selective estrogen response modifiers enhance barrier integrity and enhance secretion of protective anti-HIV molecules. Finally, understanding the interactions and regulation of FRT endogenous antimicrobials, proteases, antiproteases, etc., all of which are under hormonal control, will open new avenues to therapeutic manipulation of the FRT mucosal microenvironment. By seeking new alternatives to preventing HIV infection in women, we may finally disrupt the HIV pandemic.
Resumo:
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract.
Resumo:
The immune system in the female reproductive tract (FRT) does not mount an attack against HIV or other sexually transmitted infections (STI) with a single endogenously produced microbicide or with a single arm of the immune system. Instead, the body deploys dozens of innate antimicrobials to the secretions of the female reproductive tract. Working together, these antimicrobials along with mucosal antibodies attack many different viral, bacterial and fungal targets. Within the FRT, the unique challenges of protection against sexually transmitted pathogens coupled with the need to sustain the development of an allogeneic fetus have evolved in such a way that sex hormones precisely regulate immune function to accomplish both tasks. The studies presented in this review demonstrate that estradiol and progesterone secreted during the menstrual cycle act both directly and indirectly on epithelial cells and other immune cells in the reproductive tract to modify immune function in a way that is unique to specific sites throughout the FRT. As presented in this review, studies from our laboratory and others demonstrate that the innate immune response is under hormonal control, varies with the stage of the menstrual cycle, and as such is suppressed at mid-cycle to optimize conditions for successful fertilization and pregnancy. In doing so, a window of STI vulnerability is created during which potential pathogens including HIV enter the reproductive tract to infect host targets.
Resumo:
Chlamydia trachomatis is a pathogen of the genital tract and ocular epithelium. Infection is established by the binding of the metabolically inert elementary body (EB) to epithelial cells. These are taken up by endocytosis into a membrane-bound vesicle termed an inclusion. The inclusion avoids fusion with host lysosomes, and the EBs differentiate into the metabolically active reticulate body (RB), which replicates by binary fission within the protected environment of the inclusion. During the extracellular EB stage of the C. trachomatis life cycle, antibody present in genital tract or ocular secretions can inhibit infection both in vivo and in tissue culture. The RB, residing within the intracellular inclusion, is not accessible to antibody, and resolution of infection at this stage requires a cell-mediated immune response mediated by gamma interferon-secreting Th1 cells. Thus, an ideal vaccine to protect against C. trachomatis genital tract infection should induce both antibody (immunoglobulin A [IgA] and IgG) responses in mucosal secretions to prevent infection by chlamydial EB and a strong Th1 response to limit ascending infection to the uterus and fallopian tubes. In the present study we show that transcutaneous immunization with major outer membrane protein (MOMP) in combination with both cholera toxin and CpG oligodeoxynucleotides elicits MOMP-specific IgG and IgA in vaginal and uterine lavage fluid, MOMP-specific IgG in serum, and gamma interferon-secreting T cells in reproductive tract-draining caudal and lumbar lymph nodes. This immunization protocol resulted in enhanced clearance of C. muridarum (C. trachomatis, mouse pneumonitis strain) following intravaginal challenge of BALB/c mice.
Resumo:
Chlamydia trachomatis is the most common sexually transmitted bacterial infection worldwide. The impact of this pathogen on human reproduction has intensified research efforts to better understand chlamydial infection and pathogenesis. Whilst there are animal models available that mimic the many aspects of human chlamydial infection, the mouse is regarded as the most practical and widely used of the models. Studies in mice have greatly contributed to our understanding of the host-pathogen interaction and provided an excellent medium for evaluating vaccines. Here we explore the advantages and disadvantages of all animal models of chlamydial genital tract infection, with a focus on the murine model and what we have learnt from it so far.
Resumo:
Background Through clinical observation nursing staff of an inpatient rehabilitation unit identified a link between incontinence and undiagnosed urinary tract infections (UTIs). Further, clinical observation and structured continence management led to the realisation that urinary incontinence often improved, or resolved completely, after treatment with antibiotics. In 2009 a small study found that 30% of admitted rehabilitation patients had an undiagnosed UTI, with the majority admitted post-orthopaedic fracture. We suspected that the frequent use of indwelling urinary catheters (IDCs) in the orthopaedic environment may have been a contributing factor. Therefore, a second, more thorough, study was commenced in 2010 and completed in 2011. Aim The aim of this study was to identify what proportion of patients were admitted to one rehabilitation unit with an undiagnosed UTI over a 12-month period. We wanted to identify and highlight the presence of known risk factors associated with UTI and determine whether urinary incontinence was associated with the presence of UTI. Methods Data were collected from every patient that was admitted over a 12-month period (n=140). The majority of patients were over the age of 65 and had an orthopaedic fracture (36.4%) or stroke (27.1%). Mid-stream urine (MSU) samples, routinely collected and sent for culture and sensitivity as part of standard admission procedure, were used by the treating medical officer to detect the presence of UTI. A data collection sheet was developed, reviewed and trialled, before official data collection commenced. Data were collected as part of usual practice and collated by a research assistant. Inferential statistics were used to analyse the data. Results This study found that 25 (17.9%) of the 140 patients admitted to rehabilitation had an undiagnosed UTI, with a statistically significant association between prior presence of an IDC and the diagnosis of UTI. Urinary incontinence improved after the completion of treatment with antibiotics. Results further demonstrated a significant association between the confirmation of a UTI on culture and sensitivity and the absence of symptoms usually associated with UTI, such as burning or stinging on urination. Overall, this study suggests careful monitoring of urinary symptoms in patients admitted to rehabilitation, especially in patients with a prior IDC, is warranted.
Resumo:
The project evaluated potential of soluble cellulose as a cheap feed ingredient for major farmed Australian freshwater crayfish species testing their growth performance, digestive enzyme activity and digestive enzyme gene expression patterns. Test animals showed an innate capacity to utilise a range of carbohydrate sources including complex structural polysaccharides. Results suggest that more plant-derived ingredient can be incorporated in formulated low-cost feeds for the culture industry.
Resumo:
Urinary tract infections (UTI) are among the most common infectious diseases of humans and are the most common nosocomial infections in the developed world. It is estimated that 40–50% of women and 5% of men will develop a UTI in their lifetime, and UTI accounts for more than 1 million hospitalizations and $1.6 billion in medical expenses each year in the USA. Uropathogenic Escherichia coli (UPEC) is the primary cause of UTI. This review presents an overview of recent discoveries related to the primary virulence factors of UPEC and major innate immune responses to infection of the lower urinary tract. New and emerging themes in UPEC research are discussed in the context of the interface between host and pathogen.
Resumo:
The differences between Escherichia coli strains associated with symptomatic and asymptomatic urinary tract infections (UTIs) remain to be properly determined. Here we examined the prevalence of plasmid types and bacteriocins, as well as genetic relatedness, in a defined collection of E. coli strains that cause UTIs. Comparative analysis identified a subgroup of strains with a high number of virulence genes (VGs) and microcins M/H47. We also identified associations between microcin genes, VGs, and specific plasmid types.
Resumo:
Early transcriptional activation events that occur in bladder immediately following bacterial urinary tract infection (UTI) are not well defined. In this study, we describe the whole bladder transcriptome of uropathogenic Escherichia coli (UPEC) cystitis in mice using genome-wide expression profiling to define the transcriptome of innate immune activation stemming from UPEC colonization of the bladder. Bladder RNA from female C57BL/6 mice, analyzed using 1.0 ST-Affymetrix microarrays, revealed extensive activation of diverse sets of innate immune response genes, including those that encode multiple IL-family members, receptors, metabolic regulators, MAPK activators, and lymphocyte signaling molecules. These were among 1564 genes differentially regulated at 2 h postinfection, highlighting a rapid and broad innate immune response to bladder colonization. Integrative systems-level analyses using InnateDB (http://www.innatedb.com) bioinformatics and ingenuity pathway analysis identified multiple distinct biological pathways in the bladder transcriptome with extensive involvement of lymphocyte signaling, cell cycle alterations, cytoskeletal, and metabolic changes. A key regulator of IL activity identified in the transcriptome was IL-10, which was analyzed functionally to reveal marked exacerbation of cystitis in IL-10–deficient mice. Studies of clinical UTI revealed significantly elevated urinary IL-10 in patients with UPEC cystitis, indicating a role for IL-10 in the innate response to human UTI. The whole bladder transcriptome presented in this work provides new insight into the diversity of innate factors that determine UTI on a genome-wide scale and will be valuable for further data mining. Identification of protective roles for other elements in the transcriptome will provide critical new insight into the complex cascade of events that underpin UTI.