952 resultados para diagram
O Processo de Raciocínio na Teoria dos Constrangimentos Aplicado numa Instituição de Ensino Superior
Resumo:
A Teoria dos Constrangimentos (TOC) ou das Restrições tem-se mostrado uma valiosa ferramenta de gestão, auxiliando na identificação dos constrangimentos que limitem a capacidade das empresas na prossecução da sua meta. Assim, para as restrições não físicas, a TOC desenvolveu o Processo de Raciocínio que é composto por ferramentas de análise lógica que dão subsídios para o diagnóstico de problemas bem como a formulação de soluções e planos de acção para implementá-las. Neste contexto, este trabalho se propõe a determinar a adequação do Processo de Raciocínio da Teoria dos Constrangimentos numa Instituição de Ensino Superior (IES) como forma de diagnosticar os problemas e propor soluções capazes de permitir a empresa uma melhoria contínua do seu desempenho. Serão avaliadas as ferramentas que compõem o Processo de Raciocínio, que são: Árvore de Realidade Actual, Diagrama de Dispersão de nuvens, Árvore de Realidade Futura, Árvore de Pré-Requisitos e Árvore de Transição. O trabalho inicia-se com uma pesquisa bibliográfica seguida de uma pesquisa de campo e finalizando com uma aplicação do PR numa IES localizada na ilha de São Vicente. A colecta de informações para a análise processou-se mediante a aplicação de um questionário fechado aos discentes e funcionários, questionário aberto aos docentes e entrevista estruturada aos dirigentes, elaborados em coerência com os objectivos que este estudo pretende atingir. Os resultados da aplicação do método aqui apresentado permitiram chegar as conclusões apontadas no capítulo final deste trabalho The Theory of Constraints (TOC) or Restriction Theory has proved to be a valuable management tool, assisting in the identification of constraints that restrict the ability of companies in the pursuit of its goals. Therefore, for the nonphysical constraints, TOC developed the Thinking Process (TP) that consists of logical analysis tools that provide a basis for diagnosing problems and formulating solutions and action plans to implement them. This study aims, thus, to determine the suitability of the use of the Thinking Process of the Theory of Constraints in a Higher Education Institution (HEI) as a way to diagnose problems and propose solutions that enable the firm to continually improve their performance. We will evaluate the tools that make up the TP, which are: Current Reality Tree, Evaporating Cloud Diagram, Future Reality Tree, Prerequisites Tree and Transition Tree. The work starts with a literature review, followed by a field search, and finishes with an application of the reasoning process in a higher education institution, located in São Vicente. The collection of the data for the analysis was processed through the application of a closed questionnaire to students and staff, opened questionnaire to teachers and interviews to management, drafted in line with the objectives that this study aims to reach. The results of the application of the method presented here, allowed us to reach the conclusions drawn in the final chapter of this work.
Resumo:
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
Resumo:
Elevated serum urate concentrations can cause gout, a prevalent and painful inflammatory arthritis. By combining data from >140,000 individuals of European ancestry within the Global Urate Genetics Consortium (GUGC), we identified and replicated 28 genome-wide significant loci in association with serum urate concentrations (18 new regions in or near TRIM46, INHBB, SFMBT1, TMEM171, VEGFA, BAZ1B, PRKAG2, STC1, HNF4G, A1CF, ATXN2, UBE2Q2, IGF1R, NFAT5, MAF, HLF, ACVR1B-ACVRL1 and B3GNT4). Associations for many of the loci were of similar magnitude in individuals of non-European ancestry. We further characterized these loci for associations with gout, transcript expression and the fractional excretion of urate. Network analyses implicate the inhibins-activins signaling pathways and glucose metabolism in systemic urate control. New candidate genes for serum urate concentration highlight the importance of metabolic control of urate production and excretion, which may have implications for the treatment and prevention of gout.
Resumo:
Recent studies have indicated that gamma band oscillations participate in the temporal binding needed for the synchronization of cortical networks involved in short-term memory and attentional processes. To date, no study has explored the temporal dynamics of gamma band in the early stages of dementia. At baseline, gamma band analysis was performed in 29 cases with mild cognitive impairment (MCI) during the n-back task. Based on phase diagrams, multiple linear regression models were built to explore the relationship between the cognitive status and gamma oscillation changes over time. Individual measures of phase diagram complexity were made using fractal dimension values. After 1 year, all cases were assessed neuropsychologically using the same battery. A total of 16 MCI patients showed progressive cognitive decline (PMCI) and 13 remained stable (SMCI). When adjusted for gamma values at lag -2, and -3 ms, PMCI cases displayed significantly lower average changes in gamma values than SMCI cases both in detection and 2-back tasks. Gamma fractal dimension of PMCI cases displayed significantly higher gamma fractal dimension values compared to SMCI cases. This variable explained 11.8% of the cognitive variability in this series. Our data indicate that the progression of cognitive decline in MCI is associated with early deficits in temporal binding that occur during the activation of selective attention processes.
Resumo:
Protein-protein interactions encode the wiring diagram of cellular signaling pathways and their deregulations underlie a variety of diseases, such as cancer. Inhibiting protein-protein interactions with peptide derivatives is a promising way to develop new biological and therapeutic tools. Here, we develop a general framework to computationally handle hundreds of non-natural amino acid sidechains and predict the effect of inserting them into peptides or proteins. We first generate all structural files (pdb and mol2), as well as parameters and topologies for standard molecular mechanics software (CHARMM and Gromacs). Accurate predictions of rotamer probabilities are provided using a novel combined knowledge and physics based strategy. Non-natural sidechains are useful to increase peptide ligand binding affinity. Our results obtained on non-natural mutants of a BCL9 peptide targeting beta-catenin show very good correlation between predicted and experimental binding free-energies, indicating that such predictions can be used to design new inhibitors. Data generated in this work, as well as PyMOL and UCSF Chimera plug-ins for user-friendly visualization of non-natural sidechains, are all available at http://www.swisssidechain.ch. Our results enable researchers to rapidly and efficiently work with hundreds of non-natural sidechains.
Resumo:
Two finite extensive-form games are empirically equivalent when theempirical distribution on action profiles generated by every behaviorstrategy in one can also be generated by an appropriately chosen behaviorstrategy in the other. This paper provides a characterization ofempirical equivalence. The central idea is to relate a game's informationstructure to the conditional independencies in the empirical distributionsit generates. We present a new analytical device, the influence opportunitydiagram of a game, describe how such a diagram is constructed for a givenextensive-form game, and demonstrate that it provides a complete summaryof the information needed to test empirical equivalence between two games.
Resumo:
The principal objective of the knot theory is to provide a simple way of classifying and ordering all the knot types. Here, we propose a natural classification of knots based on their intrinsic position in the knot space that is defined by the set of knots to which a given knot can be converted by individual intersegmental passages. In addition, we characterize various knots using a set of simple quantum numbers that can be determined upon inspection of minimal crossing diagram of a knot. These numbers include: crossing number; average three-dimensional writhe; number of topological domains; and the average relaxation value
Resumo:
Related to the raise of the awareness of the importance of the Earth heritage, geomorphosites receive increasing attention from the scientific community. Assessment methods, classification and conservation strategies have been developed to safeguard the geomorphological heritage for present and future generations. On the other hand, Earth heritage offers opportunities to develop educational and recreational programs as well as tourism projects. Various interpretive supports and local development projects have been engendered in the past few years to promote geoheritage.¦Be it for the assessment, conservation or promotion of geomorphosites, maps are valuable from many standpoints. They can provide fundamental data for detailed geomorphosite description, serve as visual communication tools helping to guide the selection process in defining protection priority or supporting Earth heritage promotion and interpretàtion.¦This study reviews the main achievements and the objectives yet to be accomplished in the field of geomorphosite mapping and proposes a general framework for the mapping of geomorphosites that takes into account the different aims and publics. The main focus is on mapping geomorphosites for non-specialists in the field of Earth heritage promotion (Geotourism). In this context, maps are often employed to show itineraries or points of interest. Like a scheme or a diagram, a map can also be used as a method for visualising geoscientific information. This function is particularly important since some processes, which contributed to the formation of a geomorphosite or a geomorphological landscape are no longer or not always clearly visible in the landscape. In this case, maps become interpretive media that serve popularisation purposes.¦Mapping for non-specialists holds the challenging task to ensure the information transfer between the cartographer and the user. We therefore focus on both the implementation of the map by the cartographer (which information? which visualisation?) and the interpretation of the map by the user (effectiveness of the knowledge transfer). The research is based on empirical studies carried out in the Maderan valley (Canton of Uri) and in classes of the Cantons of Uri and Tessin that aim to gain knowledge about the familiarity and interests of non- specialists for geoheritage as well as about their map reading skills. The final objective is to formulate methodological proposals for geomorphosite mapping for interpretive purpose.
Resumo:
Johnson CCD photometry was performed in the two subgroups of the association Cepheus OB3, for selected fields each containing at least one star with previous UBV photoelectric photometry. Photometry for about 1000 stars down to visual magnitude 21 is provided, although the completeness tests show that the sample is complete down to V=19mag. Individual errors were assigned to the magnitude and colours for each star. Colour-colour and colour-magnitude diagrams are shown. Astrometric positions of the stars are also given. Description of the reduction procedure is fully detailed.
Resumo:
In recent years, several authors have revised the calibrations used to compute physical parameters (tex2html_wrap_inline498, tex2html_wrap_inline500, log g, [Fe/H]) from intrinsic colours in the tex2html_wrap_inline504 photometric system. For reddened stars, these intrinsic colours can be computed through the standard relations among colour indices for each of the regions defined by Strömgren (1966) on the HR diagram. We present a discussion of the coherence of these calibrations for main-sequence stars. Stars from open clusters are used to carry out this analysis. Assuming that individual reddening values and distances should be similar for all the members of a given open cluster, systematic differences among the calibrations used in each of the photometric regions might arise when comparing mean reddening values and distances for the members of each region. To classify the stars into Strömgren's regions we extended the algorithm presented by Figueras et al. (1991) to a wider range of spectral types and luminosity classes. The observational ZAMS are compared with the theoretical ZAMS from stellar evolutionary models, in the range tex2html_wrap_inline506 K. The discrepancies are also discussed.
Resumo:
The absolute K magnitudes and kinematic parameters of about 350 oxygen-rich Long-Period Variable stars are calibrated, by means of an up-to-date maximum-likelihood method, using HIPPARCOS parallaxes and proper motions together with radial velocities and, as additional data, periods and V-K colour indices. Four groups, differing by their kinematics and mean magnitudes, are found. For each of them, we also obtain the distributions of magnitude, period and de-reddened colour of the base population, as well as de-biased period-luminosity-colour relations and their two-dimensional projections. The SRa semiregulars do not seem to constitute a separate class of LPVs. The SRb appear to belong to two populations of different ages. In a PL diagram, they constitute two evolutionary sequences towards the Mira stage. The Miras of the disk appear to pulsate on a lower-order mode. The slopes of their de-biased PL and PC relations are found to be very different from the ones of the Oxygen Miras of the LMC. This suggests that a significant number of so-called Miras of the LMC are misclassified. This also suggests that the Miras of the LMC do not constitute a homogeneous group, but include a significant proportion of metal-deficient stars, suggesting a relatively smooth star formation history. As a consequence, one may not trivially transpose the LMC period-luminosity relation from one galaxy to the other.
Resumo:
The occurrence of heterostructures of cubic silicon/hexagonal silicon as disks defined along the nanowire (111) growth direction is reviewed in detail for Si nanowires obtained using Cu as catalyst. Detailed measurements on the structural properties of both semiconductor phases and their interface are presented. We observe that during growth, lamellar twinning on the cubic phase along the (111) direction is generated. Consecutive presence of twins along the (111) growth direction was found to be correlated with the origin of the local formation of the hexagonal Si segments along the nanowires, which define quantum wells of hexagonal Si diamond. Finally, we evaluate and comment on the consequences of the twins and wurtzite in the final electronic properties of the wires with the help of the predicted energy band diagram.
Resumo:
We work out a semiclassical theory of shot noise in ballistic n+-i-n+ semiconductor structures aiming at studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Coulomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage characteristics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two dimensionless variables related to the sample length and contact chemical potential. Here different regions of physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte Carlo simulations.
Resumo:
We consider systems that can be described in terms of two kinds of degree of freedom. The corresponding ordering modes may, under certain conditions, be coupled to each other. We may thus assume that the primary ordering mode gives rise to a diffusionless first-order phase transition. The change of its thermodynamic properties as a function of the secondary-ordering-mode state is then analyzed. Two specific examples are discussed. First, we study a three-state Potts model in a binary system. Using mean-field techniques, we obtain the phase diagram and different properties of the system as a function of the distribution of atoms on the different lattice sites. In the second case, the properties of a displacive structural phase transition of martensitic type in a binary alloy are studied as a function of atomic order. Because of the directional character of the martensitic-transition mechanism, we find only a very weak dependence of the entropy on atomic order. Experimental results are found to be in quite good agreement with theoretical predictions.
Resumo:
Measurements of the entropy change at the martensitic transition of two composition-related sets of Cu-Al-Mn shape-memory alloys are reported. It is found that most of the entropy change has a vibrational origin, and depends only on the particular close-packed structure of the low-temperature phase. Using data from the literature for other Cu-based alloys, this result is shown to be general. In addition, it is shown that the martensitic structure changes from 18R to 2H when the ratio of conduction electrons per atom reaches the same value as the eutectoid point in the equilibrium phase diagram. This finding indicates that the structure of the metastable low-temperature phase is reminiscent of the equilibrium structure.