881 resultados para data generation
Resumo:
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.
Resumo:
The goal of the Chemistry‐Climate Model Validation (CCMVal) activity is to improve understanding of chemistry‐climate models (CCMs) through process‐oriented evaluation and to provide reliable projections of stratospheric ozone and its impact on climate. An appreciation of the details of model formulations is essential for understanding how models respond to the changing external forcings of greenhouse gases and ozonedepleting substances, and hence for understanding the ozone and climate forecasts produced by the models participating in this activity. Here we introduce and review the models used for the second round (CCMVal‐2) of this intercomparison, regarding the implementation of chemical, transport, radiative, and dynamical processes in these models. In particular, we review the advantages and problems associated with approaches used to model processes of relevance to stratospheric dynamics and chemistry. Furthermore, we state the definitions of the reference simulations performed, and describe the forcing data used in these simulations. We identify some developments in chemistry‐climate modeling that make models more physically based or more comprehensive, including the introduction of an interactive ocean, online photolysis, troposphere‐stratosphere chemistry, and non‐orographic gravity‐wave deposition as linked to tropospheric convection. The relatively new developments indicate that stratospheric CCM modeling is becoming more consistent with our physically based understanding of the atmosphere.
Resumo:
This chapter presents techniques used for the generation of 3D digital elevation models (DEMs) from remotely sensed data. Three methods are explored and discussed—optical stereoscopic imagery, Interferometric Synthetic Aperture Radar (InSAR), and LIght Detection and Ranging (LIDAR). For each approach, the state-of-the-art presented in the literature is reviewed. Techniques involved in DEM generation are presented with accuracy evaluation. Results of DEMs reconstructed from remotely sensed data are illustrated. While the processes of DEM generation from satellite stereoscopic imagery represents a good example of passive, multi-view imaging technology, discussed in Chap. 2 of this book, InSAR and LIDAR use different principles to acquire 3D information. With regard to InSAR and LIDAR, detailed discussions are conducted in order to convey the fundamentals of both technologies.
Resumo:
This chapter introduces the latest practices and technologies in the interactive interpretation of environmental data. With environmental data becoming ever larger, more diverse and more complex, there is a need for a new generation of tools that provides new capabilities over and above those of the standard workhorses of science. These new tools aid the scientist in discovering interesting new features (and also problems) in large datasets by allowing the data to be explored interactively using simple, intuitive graphical tools. In this way, new discoveries are made that are commonly missed by automated batch data processing. This chapter discusses the characteristics of environmental science data, common current practice in data analysis and the supporting tools and infrastructure. New approaches are introduced and illustrated from the points of view of both the end user and the underlying technology. We conclude by speculating as to future developments in the field and what must be achieved to fulfil this vision.
Resumo:
n the past decade, the analysis of data has faced the challenge of dealing with very large and complex datasets and the real-time generation of data. Technologies to store and access these complex and large datasets are in place. However, robust and scalable analysis technologies are needed to extract meaningful information from these datasets. The research field of Information Visualization and Visual Data Analytics addresses this need. Information visualization and data mining are often used complementary to each other. Their common goal is the extraction of meaningful information from complex and possibly large data. However, though data mining focuses on the usage of silicon hardware, visualization techniques also aim to access the powerful image-processing capabilities of the human brain. This article highlights the research on data visualization and visual analytics techniques. Furthermore, we highlight existing visual analytics techniques, systems, and applications including a perspective on the field from the chemical process industry.
Resumo:
Human ICT implants, such as RFID implants, cochlear implants, cardiac pacemakers, Deep Brain Stimulation, bionic limbs connected to the nervous system, and networked cognitive prostheses, are becoming increasingly complex. With ever-growing data processing functionalities in these implants, privacy and security become vital concerns. Electronic attacks on human ICT implants can cause significant harm, both to implant subjects and to their environment. This paper explores the vulnerabilities which human implants pose to crime victimisation in light of recent technological developments, and analyses how the law can deal with emerging challenges of what may well become the next generation of cybercrime: attacks targeted at technology implanted in the human body. After a state-of-the-art description of relevant types of human implants and a discussion how these implants challenge existing perceptions of the human body, we describe how various modes of attacks, such as sniffing, hacking, data interference, and denial of service, can be committed against implants. Subsequently, we analyse how these attacks can be assessed under current substantive and procedural criminal law, drawing on examples from UK and Dutch law. The possibilities and limitations of cybercrime provisions (eg, unlawful access, system interference) and bodily integrity provisions (eg, battery, assault, causing bodily harm) to deal with human-implant attacks are analysed. Based on this assessment, the paper concludes that attacks on human implants are not only a new generation in the evolution of cybercrime, but also raise fundamental questions on how criminal law conceives of attacks. Traditional distinctions between physical and non-physical modes of attack, between human bodies and things, between exterior and interior of the body need to be re-interpreted in light of developments in human implants. As the human body and technology become increasingly intertwined, cybercrime legislation and body-integrity crime legislation will also become intertwined, posing a new puzzle that legislators and practitioners will sooner or later have to solve.
Resumo:
Performance modelling is a useful tool in the lifeycle of high performance scientific software, such as weather and climate models, especially as a means of ensuring efficient use of available computing resources. In particular, sufficiently accurate performance prediction could reduce the effort and experimental computer time required when porting and optimising a climate model to a new machine. In this paper, traditional techniques are used to predict the computation time of a simple shallow water model which is illustrative of the computation (and communication) involved in climate models. These models are compared with real execution data gathered on AMD Opteron-based systems, including several phases of the U.K. academic community HPC resource, HECToR. Some success is had in relating source code to achieved performance for the K10 series of Opterons, but the method is found to be inadequate for the next-generation Interlagos processor. The experience leads to the investigation of a data-driven application benchmarking approach to performance modelling. Results for an early version of the approach are presented using the shallow model as an example.
Resumo:
MAGIC populations represent one of a new generation of crop genetic mapping resources combining high genetic recombination and diversity. We describe the creation and validation of an eight-parent MAGIC population consisting of 1091 F7 lines of winter-sown wheat (Triticum aestivum L.). Analyses based on genotypes from a 90,000-single nucleotide polymorphism (SNP) array find the population to be well-suited as a platform for fine-mapping quantitative trait loci (QTL) and gene isolation. Patterns of linkage disequilibrium (LD) show the population to be highly recombined; genetic marker diversity among the founders was 74% of that captured in a larger set of 64 wheat varieties, and 54% of SNPs segregating among the 64 lines also segregated among the eight founder lines. In contrast, a commonly used reference bi-parental population had only 54% of the diversity of the 64 varieties with 27% of SNPs segregating. We demonstrate the potential of this MAGIC resource by identifying a highly diagnostic marker for the morphological character "awn presence/absence" and independently validate it in an association-mapping panel. These analyses show this large, diverse, and highly recombined MAGIC population to be a powerful resource for the genetic dissection of target traits in wheat, and it is well-placed to efficiently exploit ongoing advances in phenomics and genomics. Genetic marker and trait data, together with instructions for access to seed, are available at http://www.niab.com/MAGIC/.
Resumo:
Using data from the EISCAT (European Incoherent Scatter) VHF and CUTLASS (Co-operative UK Twin- Located Auroral Sounding System) HF radars, we study the formation of ionospheric polar cap patches and their relationship to the magnetopause reconnection pulses identified in the companion paper by Lockwood et al. (2005). It is shown that the poleward-moving, high-concentration plasma patches observed in the ionosphere by EISCAT on 23 November 1999, as reported by Davies et al. (2002), were often associated with corresponding reconnection rate pulses. However, not all such pulses generated a patch and only within a limited MLT range (11:00–12:00 MLT) did a patch result from a reconnection pulse. Three proposed mechanisms for the production of patches, and of the concentration minima that separate them, are analysed and evaluated: (1) concentration enhancement within the patches by cusp/cleft precipitation; (2) plasma depletion in the minima between the patches by fast plasma flows; and (3) intermittent injection of photoionisation-enhanced plasma into the polar cap. We devise a test to distinguish between the effects of these mechanisms. Some of the events repeat too frequently to apply the test. Others have sufficiently long repeat periods and mechanism (3) is shown to be the only explanation of three of the longer-lived patches seen on this day. However, effect (2) also appears to contribute to some events. We conclude that plasma concentration gradients on the edges of the larger patches arise mainly from local time variations in the subauroral plasma, via the mechanism proposed by Lockwood et al. (2000).
Resumo:
India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).
Resumo:
The past years have shown an enormous advancement in sequencing and array-based technologies, producing supplementary or alternative views of the genome stored in various formats and databases. Their sheer volume and different data scope pose a challenge to jointly visualize and integrate diverse data types. We present AmalgamScope a new interactive software tool focusing on assisting scientists with the annotation of the human genome and particularly the integration of the annotation files from multiple data types, using gene identifiers and genomic coordinates. Supported platforms include next-generation sequencing and microarray technologies. The available features of AmalgamScope range from the annotation of diverse data types across the human genome to integration of the data based on the annotational information and visualization of the merged files within chromosomal regions or the whole genome. Additionally, users can define custom transcriptome library files for any species and use the file exchanging distant server options of the tool.
Resumo:
Met Office station data from 1980 to 2012 has been used to characterise the interannual variability of incident solar irradiance across the UK. The same data are used to evaluate four popular historical irradiance products to determine which are most suitable for use by the UK PV industry for site selection and system design. The study confirmed previous findings that interannual variability is typically 3–6% and weighted average probability of a particular percentage deviation from the mean at an average site in the UK was calculated. This weighted average showed that fewer than 2% of site-years could be expected to fall below 90% of the long-term site mean. The historical irradiance products were compared against Met Office station data from the input years of each product. This investigation has found that all products perform well. No products have a strong spatial trend. Meteonorm 7 is most conservative (MBE = −2.5%), CMSAF is most optimistic (MBE = +3.4%) and an average of all four products performs better than any one individual product (MBE = 0.3%)
Resumo:
Wind generation's contribution to supporting peak electricity demand is one of the key questions in wind integration studies. Differently from conventional units, the available outputs of different wind farms cannot be approximated as being statistically independent, and hence near-zero wind output is possible across an entire power system. This paper will review the risk model structures currently used to assess wind's capacity value, along with discussion of the resulting data requirements. A central theme is the benefits from performing statistical estimation of the joint distribution for demand and available wind capacity, focusing attention on uncertainties due to limited histories of wind and demand data; examination of Great Britain data from the last 25 years shows that the data requirements are greater than generally thought. A discussion is therefore presented into how analysis of the types of weather system which have historically driven extreme electricity demands can help to deliver robust insights into wind's contribution to supporting demand, even in the face of such data limitations. The role of the form of the probability distribution for available conventional capacity in driving wind capacity credit results is also discussed.
Resumo:
Solitar y meanders of the Agulhas Current, so-called Natal pulses, may play an important role in the overall dynamics of this current system. Several hypotheses concer ning the triggering of these pulses are tested using sea sur face height and temperature data from satellites. The data show the for mation of pulses in the Natal Bight area at irregular inter vals ranging from 50 to 240 days. Moving downstream at speeds between 10 and 20 km day 2 1 they sometimes reach sizes of up to 300 km. They seem to play a role in the shedding of Agulhas rings that penetrate the South Atlantic. The inter mittent for mation of these solitar y meanders is argued to be most probably related to barotropic instability of the strongly baroclinic Agulhas Current in the Natal Bight. The vorticity structure of the obser ved basic flow is argued to be stable anywhere along its path. However , a proper perturbation of the jet in the Natal Bight area will allow barotropic instability , because the bottom slope there is considerably less steep than elsewhere along the South African east coast. Using satellite altimetr y these perturbations seem to be related to the inter mittent presence of offshore anticyclonic anomalies, both upstream and eastward of the Natal Bight.
Resumo:
Clusters of galaxies are the most impressive gravitationally-bound systems in the universe, and their abundance (the cluster mass function) is an important statistic to probe the matter density parameter (Omega(m)) and the amplitude of density fluctuations (sigma(8)). The cluster mass function is usually described in terms of the Press-Schecther (PS) formalism where the primordial density fluctuations are assumed to be a Gaussian random field. In previous works we have proposed a non-Gaussian analytical extension of the PS approach with basis on the q-power law distribution (PL) of the nonextensive kinetic theory. In this paper, by applying the PL distribution to fit the observational mass function data from X-ray highest flux-limited sample (HIFLUGCS), we find a strong degeneracy among the cosmic parameters, sigma(8), Omega(m) and the q parameter from the PL distribution. A joint analysis involving recent observations from baryon acoustic oscillation (BAO) peak and Cosmic Microwave Background (CMB) shift parameter is carried out in order to break these degeneracy and better constrain the physically relevant parameters. The present results suggest that the next generation of cluster surveys will be able to probe the quantities of cosmological interest (sigma(8), Omega(m)) and the underlying cluster physics quantified by the q-parameter.