925 resultados para damping dynamic mechanical analysis DMA CFRP electrospinning tan(delta)
Resumo:
Observability measures the support of computer systems to accurately capture, analyze, and present (collectively observe) the internal information about the systems. Observability frameworks play important roles for program understanding, troubleshooting, performance diagnosis, and optimizations. However, traditional solutions are either expensive or coarse-grained, consequently compromising their utility in accommodating today’s increasingly complex software systems. New solutions are emerging for VM-based languages due to the full control language VMs have over program executions. Existing such solutions, nonetheless, still lack flexibility, have high overhead, or provide limited context information for developing powerful dynamic analyses. In this thesis, we present a VM-based infrastructure, called marker tracing framework (MTF), to address the deficiencies in the existing solutions for providing better observability for VM-based languages. MTF serves as a solid foundation for implementing fine-grained low-overhead program instrumentation. Specifically, MTF allows analysis clients to: 1) define custom events with rich semantics ; 2) specify precisely the program locations where the events should trigger; and 3) adaptively enable/disable the instrumentation at runtime. In addition, MTF-based analysis clients are more powerful by having access to all information available to the VM. To demonstrate the utility and effectiveness of MTF, we present two analysis clients: 1) dynamic typestate analysis with adaptive online program analysis (AOPA); and 2) selective probabilistic calling context analysis (SPCC). In addition, we evaluate the runtime performance of MTF and the typestate client with the DaCapo benchmarks. The results show that: 1) MTF has acceptable runtime overhead when tracing moderate numbers of marker events; and 2) AOPA is highly effective in reducing the event frequency for the dynamic typestate analysis; and 3) language VMs can be exploited to offer greater observability.
Resumo:
In this work the main concepts to apply to dynamic signal analysis technique for rotating machines known as order analysis, discussing their characteristics and applying it on an experimental test rig. It aims to characterize the dynamic behavior of experimental test rig in run up and run down tests, it's operational speed range and the identification of the critical speed of shaft rotation. The results of the critical speed and stationary natural frequency of the shaft are discussed
Resumo:
The complexity of power systems has increased in recent years due to the operation of existing transmission lines closer to their limits, using flexible AC transmission system (FACTS) devices, and also due to the increased penetration of new types of generators that have more intermittent characteristics and lower inertial response, such as wind generators. This changing nature of a power system has considerable effect on its dynamic behaviors resulting in power swings, dynamic interactions between different power system devices, and less synchronized coupling. This paper presents some analyses of this changing nature of power systems and their dynamic behaviors to identify critical issues that limit the large-scale integration of wind generators and FACTS devices. In addition, this paper addresses some general concerns toward high compensations in different grid topologies. The studies in this paper are conducted on the New England and New York power system model under both small and large disturbances. From the analyses, it can be concluded that high compensation can reduce the security limits under certain operating conditions, and the modes related to operating slip and shaft stiffness are critical as they may limit the large-scale integration of wind generation.
Resumo:
From the discoveries of Pasteur, stereochemistry has played an increasingly important role in the chemical sciences. In particular conformational study of molecules with axial chirality is object of intense research. Through Dynamic-NMR analysis and simulation of the spectra, the energy rotational barriers value of conformers are obtained. When this barrier is high sufficiently, atropisomeric stable compounds can be reached. They can be separated and used in stereo-synthesis and in packing processes. 3,4-bis-aryl maleimides, in which the aromatic groups are sufficiently bulky, generate atropisomeric stable configurations, that can be isolated at room temperature. The assignment of absolute configurations is performed through ECD analysis and comparison with computational calculations. The biological activities of maleimide derivatives widen the field of atropisomers application also in biological systems.
Resumo:
The aim of this Thesis is to obtain a better understanding of the mechanical behavior of the active Alto Tiberina normal fault (ATF). Integrating geological, geodetic and seismological data, we perform 2D and 3D quasi-static and dynamic mechanical models to simulate the interseismic phase and rupture dynamic of the ATF. Effects of ATF locking depth, synthetic and antithetic fault activity, lithology and realistic fault geometries are taken in account. The 2D and 3D quasi-static model results suggest that the deformation pattern inferred by GPS data is consistent with a very compliant ATF zone (from 5 to 15 km) and Gubbio fault activity. The presence of the ATF compliant zone is a first order condition to redistribute the stress in the Umbria-Marche region; the stress bipartition between hanging wall (high values) and footwall (low values) inferred by the ATF zone activity could explain the microseismicity rates that are higher in the hanging wall respect to the footwall. The interseismic stress build-up is mainly located along the Gubbio fault zone and near ATF patches with higher dip (30°
Resumo:
The thesis is divided in three chapters, each one covering one topic. Initially, the thermo-mechanical and impact properties of materials used for back protectors have been analysed. Dynamical mechanical analysis (DMTA) has shown that materials used for soft-shell protectors present frequency-sensitive properties. Furthermore, through impact tests, the shock absorbing characteristics of the materials have been investigated proving the differences between soft and hard-shell protectors; moreover it has been demonstrated that the materials used for soft-shell protectors maintain their protective properties after multi-impacts. The second chapter covers the effect of the visco-elastic properties of the thermoplastic polymers on the flexural and rebound behaviours of ski boots. DMTA analysis on the materials and flexural and rebound testing on the boots have been performed. A comparison of the results highlighted a correlation between the visco-elastic properties and the flexural and rebound behaviour of ski boots. The same experimental methods have been used to investigate the influence of the design on the flexural and rebound behaviours. Finally in the third chapter the thermoplastic materials employed for the construction of ski boots soles have been characterized in terms of chemical composition, hardness, crystallinity, surface roughness and coefficient of friction (COF). The results showed a relation between material hardness and grip, in particular softer materials provide more grip with respect to harder materials. On the contrary, the surface roughness has a negative effect on friction because of the decrease in contact area. The measure of grip on inclined wet surfaces showed again a relation between hardness and grip. The performance ranking of the different materials has been the same for the COF and for the slip angle tests, indicating that COF can be used as a parameter for the choice of the optimal material to be used for the soles of ski boots.
Resumo:
Seismic assessment and seismic strengthening are the key issues need to be figured out during the process of protection and reusing of historical buildings. In this thesis the seismic behaviors of the hinged steel structure, a typical structure of historical buildings, i.e. hinged steel frames in Shanghai, China, were studied based on experimental investigations and theoretic analysis. How the non-structural members worked with the steel frames was analyzed thoroughly. Firstly, two 1/4 scale hinged steel frames were constructed based on the structural system of Bund 18, a historical building in Shanghai: M1 model without infill walls, M2 model with infill walls, and tested under the horizontal cyclic loads to investigate their seismic behavior. The Shaking Table Test and its results indicated that the seismic behavior of the hinged steel frames could be improved significantly with the help of non-structural members, i.e., surrounding elements outside the hinged steel frames and infilled walls. To specify, the columns are covered with bricks, they consist of I shape formed steel sections and steel plates, which are clenched together. The steel beams are connected to the steel column by steel angle, thus the structure should be considered as a hinged frame. And the infilled wall acted as a compression diagonal strut to withstand the horizontal load, therefore, the seismic capacity and stiffness of the hinged steel frames with infilled walls could be estimated by using the equivalent compression diagonal strut model. A SAP model has been constructed with the objective to perform a dynamic nonlinear analysis. The obtained results were compared with the results obtained from Shaking Table Test. The Test Results have validated that the influence of infill walls on seismic behavior can be estimated by using the equivalent diagonal strut model.
Resumo:
We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate model simulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January–April, JFMA) season. A Canonical Correlation Analysis (CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760–2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulation and European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations. Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations (ECHO-G and HadCM3). This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better asses documentary data in a quantitative way.
Resumo:
This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.
Resumo:
En esta tesis se va a describir y aplicar de forma novedosa la técnica del alisado exponencial multivariante a la predicción a corto plazo, a un día vista, de los precios horarios de la electricidad, un problema que se está estudiando intensivamente en la literatura estadística y económica reciente. Se van a demostrar ciertas propiedades interesantes del alisado exponencial multivariante que permiten reducir el número de parámetros para caracterizar la serie temporal y que al mismo tiempo permiten realizar un análisis dinámico factorial de la serie de precios horarios de la electricidad. En particular, este proceso multivariante de elevada dimensión se estimará descomponiéndolo en un número reducido de procesos univariantes independientes de alisado exponencial caracterizado cada uno por un solo parámetro de suavizado que variará entre cero (proceso de ruido blanco) y uno (paseo aleatorio). Para ello, se utilizará la formulación en el espacio de los estados para la estimación del modelo, ya que ello permite conectar esa secuencia de modelos univariantes más eficientes con el modelo multivariante. De manera novedosa, las relaciones entre los dos modelos se obtienen a partir de un simple tratamiento algebraico sin requerir la aplicación del filtro de Kalman. De este modo, se podrán analizar y poner al descubierto las razones últimas de la dinámica de precios de la electricidad. Por otra parte, la vertiente práctica de esta metodología se pondrá de manifiesto con su aplicación práctica a ciertos mercados eléctricos spot, tales como Omel, Powernext y Nord Pool. En los citados mercados se caracterizará la evolución de los precios horarios y se establecerán sus predicciones comparándolas con las de otras técnicas de predicción. ABSTRACT This thesis describes and applies the multivariate exponential smoothing technique to the day-ahead forecast of the hourly prices of electricity in a whole new way. This problem is being studied intensively in recent statistics and economics literature. It will start by demonstrating some interesting properties of the multivariate exponential smoothing that reduce drastically the number of parameters to characterize the time series and that at the same time allow a dynamic factor analysis of the hourly prices of electricity series. In particular this very complex multivariate process of dimension 24 will be estimated by decomposing a very reduced number of univariate independent of exponentially smoothing processes each characterized by a single smoothing parameter that varies between zero (white noise process) and one (random walk). To this end, the formulation is used in the state space model for the estimation, since this connects the sequence of efficient univariate models to the multivariate model. Through a novel way, relations between the two models are obtained from a simple algebraic treatment without applying the Kalman filter. Thus, we will analyze and expose the ultimate reasons for the dynamics of the electricity price. Moreover, the practical aspect of this methodology will be shown by applying this new technique to certain electricity spot markets such as Omel, Powernext and Nord Pool. In those markets the behavior of prices will be characterized, their predictions will be formulated and the results will be compared with those of other forecasting techniques.
Resumo:
Tungsten disulphide nanotubes (INT-WS2) have been successfully dispersed in a bio-based polyamide matrix (nylon 11) by conventional melt processing. The effect of INT-WS2 content on the morphology, thermal stability, crystallization behaviour and dynamic mechanical properties is investigated. The results indicate that these inorganic nanotubes can be efficiently incorporated into the bio-based polymer matrix without the need for modifiers or surfactants. Additionally, it is found that the non-isothermal crystallization behaviour of nylon 11/INT-WS2 depends on both the cooling rate and INT-WS2 concentration. In particular, crystallization kinetics results demonstrate that the nucleating activity of INTs plays a dominant role in accelerating the crystallization of nylon 11. This fact leads to the appearance of the more-disordered phase at higher temperature. More significantly, it was shown that these INT-WS2 nanocomposites can facilitate a good processability and cost efficiency, and will be of interest for many eco-friendly and medical applications.
Resumo:
β-actin mRNA is localized near the leading edge in several cell types, where actin polymerization is actively promoting forward protrusion. The localization of the β-actin mRNA near the leading edge is facilitated by a short sequence in the 3′ untranslated region, the “zip code.” Localization of the mRNA at this region is important physiologically. Treatment of chicken embryo fibroblasts with antisense oligonucleotides complementary to the localization sequence (zip code) in the 3′ untranslated region leads to delocalization of β-actin mRNA, alteration of cell phenotype, and a decrease in cell motility. To determine the components of this process responsible for the change in cell behavior after β-actin mRNA delocalization, the Dynamic Image Analysis System was used to quantify movement of cells in the presence of sense and antisense oligonucleotides to the zip code. It was found that net path length and average speed of antisense-treated cells were significantly lower than in sense-treated cells. Total path length and the velocity of protrusion of antisense-treated cells were not affected compared with those of control cells. These results suggest that a decrease in persistence of direction of movement and not in velocity results from treatment of cells with zip code-directed antisense oligonucleotides. To test this, direct analysis of directionality was performed on antisense-treated cells and showed a decrease in directionality (net path/total path) and persistence of movement. Less directional movement of antisense-treated cells correlated with a unpolarized and discontinuous distribution of free barbed ends of actin filaments and of β-actin protein. These results indicate that delocalization of β-actin mRNA results in delocalization of nucleation sites and β-actin protein from the leading edge followed by loss of cell polarity and directional movement.
Resumo:
Devido ao esgotamento de recursos não renováveis e o aumento das preocupações sobre as alterações climáticas, a produção de combustível renovável a partir de microalgas continua a atrair muita a atenção devido ao seu potencial para taxas rápidas de crescimento, alto teor de óleo, capacidade de crescer em cenários não convencionais e a neutralidade de carbono, além de eliminar a preocupação da disputa com as culturas alimentares. Em virtude disso, torna-se importante o desenvolvimento de um processo de conversão das microalgas em gás combustível, em destaque o gás de síntese. Visando essa importância, estudou-se a reação de gaseificação da microalga Chlorella vulgaris através de experimentos de análise termogravimétrica para estimar os parâmetros cinéticos das reações e através da simulação de um modelo matemático dinâmico termoquímico do processo usando equações de conservação de massa e energia acoplados a cinética de reação. Análises termogravimétricas isotérmicas e dinâmicas foram realizadas usando dois diferentes tipos de modelos cinéticos: isoconversionais e reações paralelas independentes (RPI). Em ambos os modelos, os valores dos parâmetros cinéticos estimados apresentaram bons ajustes e permaneceram dentro daqueles encontrados na literatura. Também foram analisados os efeitos dos parâmetros cinéticos do modelo RPI sobre a conversão da microalga no intuito de observar quais mais se pronunciavam diante a variação de valores. Na etapa de simulação do sistema controlado pelo reator solar, o modelo matemático desenvolvido foi validado por meio da comparação dos valores de temperatura e concentrações de produtos obtidos medidos experimentalmente pela literatura, apresentando boa aproximação nos valores e viabilizando, juntamente com a etapa experimental de termogravimetria, a produção de gás de síntese através da gaseificação da microalga Chlorella vulgaris.
Resumo:
O método dos elementos finitos é o método numérico mais difundido na análise de estruturas. Ao longo das últimas décadas foram formulados inúmeros elementos finitos para análise de cascas e placas. As formulações de elementos finitos lidam bem com o campo de deslocamentos, mas geralmente faltam testes que possam validar os resultados obtidos para o campo das tensões. Este trabalho analisa o elemento finito T6-3i, um elemento finito triangular de seis nós proposto dentro de uma formulação geometricamente exata, em relação aos seus resultados de tensões, comparando-os com as teorias analíticas de placas, resultados de tabelas para o cálculo de momentos em placas retangulares e do ANSYSr, um software comercial para análise estrutural, mostrando que o T6-3i pode apresentar resultados insatisfatórios. Na segunda parte deste trabalho, as potencialidades do T6-3i são expandidas, sendo proposta uma formulação dinâmica para análise não linear de cascas. Utiliza-se um modelo Lagrangiano atualizado e a forma fraca é obtida do Teorema dos Trabalhos Virtuais. São feitas simulações numéricas da deformação de domos finos que apresentam vários snap-throughs e snap-backs, incluindo domos com vincos curvos, mostrando a robustez, simplicidade e versatilidade do elemento na sua formulação e na geração das malhas não estruturadas necessárias para as simulações.