948 resultados para cytoskeleton disruption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thyrotropin-releasing hormone (TRH) is a brain hypothalamic hormone that regulates thyrotropin (TSH) secretion from the anterior pituitary and is ubiquitously distributed throughout the brain and other tissues including pancreas. To facilitate studies into the role of endogenous TRH, we have used homologous recombination to generate mice that lack TRH. These TRH−/− mice are viable, fertile, and exhibit normal development. However, they showed obvious hypothyroidism with characteristic elevation of serum TSH level and diminished TSH biological activity. Their anterior pituitaries exhibited an apparent decrease in TSH immunopositive cells that was not due to hypothyroidism. Furthermore, this decrease could be reversed by TRH, but not thyroid hormone replacement, suggesting a direct involvement of TRH in the regulation of thyrotrophs. The TRH−/− mice also exhibited hyperglycemia, which was accompanied by impaired insulin secretion in response to glucose. These findings indicate that TRH−/− mice provide a model of exploiting tertiary hypothyroidism, and that TRH gene abnormalities cause disturbance of insulin secretion resulting in marked hyperglycemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An essential component of regulated steroidogenesis is the translocation of cholesterol from the cytoplasm to the inner mitochondrial membrane where the cholesterol side-chain cleavage enzyme carries out the first committed step in steroidogenesis. Recent studies showed that a 30-kDa mitochondrial phosphoprotein, designated steroidogenic acute regulatory protein (StAR), is essential for this translocation. To allow us to explore the roles of StAR in a system amenable to experimental manipulation and to develop an animal model for the human disorder lipoid congenital adrenal hyperplasia (lipoid CAH), we used targeted gene disruption to produce StAR knockout mice. These StAR knockout mice were indistinguishable initially from wild-type littermates, except that males and females had female external genitalia. After birth, they failed to grow normally and died from adrenocortical insufficiency. Hormone assays confirmed severe defects in adrenal steroids—with loss of negative feedback regulation at hypothalamic–pituitary levels—whereas hormones constituting the gonadal axis did not differ significantly from levels in wild-type littermates. Histologically, the adrenal cortex of StAR knockout mice contained florid lipid deposits, with lesser deposits in the steroidogenic compartment of the testis and none in the ovary. The sex-specific differences in gonadal involvement support a two-stage model of the pathogenesis of StAR deficiency, with trophic hormone stimulation inducing progressive accumulation of lipids within the steroidogenic cells and ultimately causing their death. These StAR knockout mice provide a useful model system in which to determine the mechanisms of StAR’s essential roles in adrenocortical and gonadal steroidogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuregulins are a multi-isoform family of growth factors that activate members of the erbB family of receptor tyrosine kinases. The membrane-anchored isoforms contain the receptor-activating ligand in their extracellular domain, a single membrane-spanning region, and a long cytoplasmic tail. To evaluate the potential biological role of the intracellular domain of the membrane-anchored neuregulin isoforms, we used a domain-specific gene disruption approach to produce a mouse line in which only the region of the neuregulin gene encoding almost the entire intracellular domain was disrupted. Consistent with previous reports in which all neuregulin isoforms were disrupted, the resulting homozygous neuregulin mutants died at E10.5 of circulatory failure and displayed defects in neural and cardiac development. To further understand these in vivo observations, we evaluated a similarly truncated neuregulin construct after transient expression in COS-7 cells. This cytoplasmic tail-deleted mutant, unlike wild-type neuregulin isoforms, was resistant to proteolytic release of its extracellular-domain ligand, a process required for erbB receptor activation. Thus, proteolytic processing of the membrane-bound neuregulin isoforms involved in cranial ganglia and heart embryogenesis is likely developmentally regulated and is critically controlled by their intracellular domain. This observation indicates that erbB receptor activation by membrane-bound neuregulins most likely involves a unique temporally and spatially regulated “inside-out” signaling process that is critical for processing and release of the extracellular-domain ligand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The membrane protein syntaxin participates in several protein–protein interactions that have been implicated in neurotransmitter release. To probe the physiological importance of these interactions, we microinjected into the squid giant presynaptic terminal botulinum toxin C1, which cleaves syntaxin, and the H3 domain of syntaxin, which mediates binding to other proteins. Both reagents inhibited synaptic transmission yet did not affect the number or distribution of synaptic vesicles at the presynaptic active zone. Recombinant H3 domain inhibited the interactions between syntaxin and SNAP-25 that underlie the formation of stable SNARE complexes in vitro. These data support the notion that syntaxin-mediated SNARE complexes are necessary for docked synaptic vesicles to fuse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have suggested that the retention of selectable marker cassettes (like PGK–Neo, in which a hybrid gene consisting of the phosphoglycerate kinase I promoter drives the neomycin phosphotransferase gene) in targeted loci can cause unexpected phenotypes in “knockout” mice due to disruption of expression of neighboring genes within a locus. We have studied targeted mutations in two multigene clusters, the granzyme B locus and the β-like globin gene cluster. The insertion of PGK–Neo into the granzyme B gene, the most 5′ gene in the granzyme B gene cluster, severely reduced the normal expression of multiple genes within the locus, even at distances greater than 100 kb from the mutation. Similarly, the insertion of a PGK–Neo cassette into the β-globin locus control region (LCR) abrogates the expression of multiple globin genes downstream from the cassette. In contrast, a targeted mutation of the promyelocyte-specific cathepsin G gene (which lies just 3′ to the granzyme genes in the same cluster) had minimal effects on upstream granzyme gene expression. Although the mechanism of these long distance effects are unknown, the expression of PGK–Neo can be “captured” by the regulatory domain into which it is inserted. These results suggest that the PGK–Neo cassette can interact productively with locus control regions and thereby disrupt normal interactions between local and long-distance regulatory regions within a tissue-specific domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All nucleated cells make phosphatidylcholine via the CDP-choline pathway. Liver has an alternative pathway in which phosphatidylcholine is made by methylation of phosphatidylethanolamine catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). We investigated the function of PEMT and its role in animal physiology by targeted disruption of its gene, Pempt2. A targeting vector that interrupts exon 2 was constructed and introduced into mice yielding three genotypes: normal (+/+), heterozygotes (+/−), and homozygotes (−/−) for the disrupted PEMT gene. Only a trace of PE methylation activity remained in Pempt2(−/−) mice. Antibody to one form of the enzyme, PEMT2, indicated complete loss of this protein from Pempt2(−/−) mice and a decrease in Pempt2(+/−) mice, compared with Pempt2(+/+) mice. The levels of hepatic phosphatidylethanolamine and phosphatidylcholine were minimally affected. The active form of CTP:phosphocholine cytidylyltransferase, the regulated enzyme in the CDP-choline pathway, was increased 60% in the PEMT-deficient mice. Injection of [l-methyl-3H]methionine demonstrated that the in vivo PEMT activity was eliminated in the Pempt2(−/−) mice and markedly decreased in the Pempt2(+/−) mice. This experiment also demonstrated that the choline moiety derived from PEMT in the liver can be distributed via the plasma throughout the mouse where it is found as phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin. Mice homozygous for the disrupted Pempt2 gene displayed no abnormal phenotype, normal hepatocyte morphology, normal plasma lipid levels and no differences in bile composition. This is the first application of the “knockout mouse” technique to a gene for phospholipid biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elimination of identified cells is a powerful tool for investigating development and system function. Here we report on genetically mediated cell disruption effected by the toxic Caenorhabditis elegans mec-4(d) allele. We found that ectopic expression of mec-4(d) in the nematode causes dysfunction of a wide range of nerve, muscle, and hypodermal cells. mec-4(d)-mediated toxicity is dependent on the activity of a second gene, mec-6, rendering cell disruption conditionally dependent on genetic background. We describe a set of mec-4(d) vectors that facilitate construction of cell-specific disruption reagents and note that genetic cell disruption can be used for functional analyses of specific neurons or neuronal classes, for confirmation of neuronal circuitry, for generation of nematode populations lacking defined classes of functional cells, and for genetic screens. We suggest that mec-4(d) and/or related genes may be effective general tools for cell inactivation that could be used toward similar purposes in higher organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscarinic acetylcholine receptors are members of the G protein-coupled receptor superfamily expressed in neurons, cardiomyocytes, smooth muscle, and a variety of epithelia. Five subtypes of muscarinic acetylcholine receptors have been discovered by molecular cloning, but their pharmacological similarities and frequent colocalization make it difficult to assign functional roles for individual subtypes in specific neuronal responses. We have used gene targeting by homologous recombination in embryonic stem cells to produce mice lacking the m1 receptor. These mice show no obvious behavioral or histological defects, and the m2, m3, and m4 receptors continue to be expressed in brain with no evidence of compensatory induction. However, the robust suppression of the M-current potassium channel activity evoked by muscarinic agonists in sympathetic ganglion neurons is completely lost in m1 mutant mice. In addition, both homozygous and heterozygous mutant mice are highly resistant to the seizures produced by systemic administration of the muscarinic agonist pilocarpine. Thus, the m1 receptor subtype mediates M current modulation in sympathetic neurons and induction of seizure activity in the pilocarpine model of epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sanfilippo syndrome type B is an autosomal recessive disorder caused by mutation in the gene (NAGLU) encoding α-N-acetylglucosaminidase, a lysosomal enzyme required for the stepwise degradation of heparan sulfate. The most serious manifestations are profound mental retardation, intractable behavior problems, and death in the second decade. To generate a model for studies of pathophysiology and of potential therapy, we disrupted exon 6 of Naglu, the homologous mouse gene. Naglu−/− mice were healthy and fertile while young and could survive for 8–12 mo. They were totally deficient in α-N-acetylglucosaminidase and had massive accumulation of heparan sulfate in liver and kidney as well as secondary changes in activity of several other lysosomal enzymes in liver and brain and elevation of gangliosides GM2 and GM3 in brain. Vacuolation was seen in many cells, including macrophages, epithelial cells, and neurons, and became more prominent with age. Although most vacuoles contained finely granular material characteristic of glycosaminoglycan accumulation, large pleiomorphic inclusions were seen in some neurons and pericytes in the brain. Abnormal hypoactive behavior was manifested by 4.5-mo-old Naglu−/− mice in an open field test; the hyperactivity that is characteristic of affected children was not observed even in younger mice. In a Pavlovian fear conditioning test, the 4.5-mo-old mutant mice showed normal response to context, indicating intact hippocampal-dependent learning, but reduced response to a conditioning tone, perhaps attributable to hearing impairment. The phenotype of the α-N-acetylglucosaminidase-deficient mice is sufficiently similar to that of patients with the Sanfilippo syndrome type B to make these mice a good model for study of pathophysiology and for development of therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory rhodopsin II (SRII) is a repellent phototaxis receptor in the archaeon Halobacterium salinarum, similar to visual pigments in its seven-helix structure and linkage of retinal to the protein by a protonated Schiff base in helix G. Asp-73 in helix C is shown by spectroscopic analysis to be a counterion to the protonated Schiff base in the unphotolyzed SRII and to be the proton acceptor from the Schiff base during photoconversion to the receptor signaling state. Coexpression of the genes encoding mutated SRII with Asn substituted for Asp-73 (D73N) and the SRII transducer HtrII in H. salinarum cells results in a 3-fold higher swimming reversal frequency accompanied by demethylation of HtrII in the dark, showing that D73N SRII produces repellent signals in its unphotostimulated state. Analogous constitutive signaling has been shown to be produced by the similar neutral residue substitution of the Schiff base counterion and proton acceptor Glu-113 in human rod rhodopsin. The interpretation for both seven-helix receptors is that light activation of the wild-type protein is caused primarily by photoisomerization-induced transfer of the Schiff base proton on helix G to its primary carboxylate counterion on helix C. Therefore receptor activation by helix C–G salt-bridge disruption in the photoactive site is a general mechanism in retinylidene proteins spanning the vast evolutionary distance between archaea and humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomerase is an essential enzyme that maintains telomeres on eukaryotic chromosomes. In mammals, telomerase is required for the lifelong proliferative capacity of normal regenerative and reproductive tissues and for sustained growth in a dedifferentiated state. Although the importance of telomeres was first elucidated in plants 60 years ago, little is known about the role of telomeres and telomerase in plant growth and development. Here we report the cloning and characterization of the Arabidopsis telomerase reverse transcriptase (TERT) gene, AtTERT. AtTERT is predicted to encode a highly basic protein of 131 kDa that harbors the reverse transcriptase and telomerase-specific motifs common to all known TERT proteins. AtTERT mRNA is 10–20 times more abundant in callus, which has high levels of telomerase activity, versus leaves, which contain no detectable telomerase. Plants homozygous for a transfer DNA insertion into the AtTERT gene lack telomerase activity, confirming the identity and function of this gene. Because telomeres in wild-type Arabidopsis are short, the discovery that telomerase-null plants are viable for at least two generations was unexpected. In the absence of telomerase, telomeres decline by approximately 500 bp per generation, a rate 10 times slower than seen in telomerase-deficient mice. This gradual loss of telomeric DNA may reflect a reduced rate of nucleotide depletion per round of DNA replication, or the requirement for fewer cell divisions per organismal generation. Nevertheless, progressive telomere shortening in the mutants, however slow, ultimately should be lethal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R −/− mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R −/− mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dld gene product, known as dihydrolipoamide dehydrogenase or the E3 component, catalyzes the oxidation of dihydrolipoyl moieties of four mitochondrial multienzyme complexes: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, branched-chain α-ketoacid dehydrogenase, and the glycine cleavage system. Deficiency of E3 activity in humans results in various degrees of neurological dysfunction and organic acidosis caused by accumulation of branched-chain amino acids and lactic acid. In this study, we have introduced a null mutation into the murine Dld gene (Dldtm1mjp). The heterozygous animals are shown to have approximately half of wild-type activity levels for E3 and all affected multienzyme complexes but are phenotypically normal. In contrast, the Dld−/− class dies prenatally with apparent developmental delay at 7.5 days postcoitum followed by resorption by 9.5 days postcoitum. The Dld−/− embryos cease to develop at a time shortly after implantation into the uterine wall when most of the embryos have begun to gastrulate. This null phenotype provides in vivo evidence for the requirement of a mitochondrial oxidative pathway during the perigastrulation period. Furthermore, the early prenatal lethal condition of the complete deficiency state may explain the low incidence of detectable cases of E3 deficiency in humans.