967 resultados para cylindrical detonation
Resumo:
DNA condensation observed in vitro with the addition of polyvalent counterions is due to intermolecular attractive forces. We introduce a quantitative model of these forces in a Brownian dynamics simulation in addition to a standard mean-field Poisson-Boltzmann repulsion. The comparison of a theoretical value of the effective diameter calculated from the second virial coefficient in cylindrical geometry with some experimental results allows a quantitative evaluation of the one-parameter attractive potential. We show afterward that with a sufficient concentration of divalent salt (typically approximately 20 mM MgCl(2)), supercoiled DNA adopts a collapsed form where opposing segments of interwound regions present zones of lateral contact. However, under the same conditions the same plasmid without torsional stress does not collapse. The condensed molecules present coexisting open and collapsed plectonemic regions. Furthermore, simulations show that circular DNA in 50% methanol solutions with 20 mM MgCl(2) aggregates without the requirement of torsional energy. This confirms known experimental results. Finally, a simulated DNA molecule confined in a box of variable size also presents some local collapsed zones in 20 mM MgCl(2) above a critical concentration of the DNA. Conformational entropy reduction obtained either by supercoiling or by confinement seems thus to play a crucial role in all forms of condensation of DNA.
Resumo:
Chaotic deposits are frequently reported in the geological literature and are commonly interpreted as olistostromes or tectonic melanges. A chaotic complex in the Cenozoic succession of Monferrato (NW Italy) consists of interbedded mud breccia and burrowed silty clays that are pierced by sheared mud breccias and embed carbonate-cemented blocks. These may be represented by microcrystalline limestones or strongly cemented matrix-supported breccias locally containing remains of chemosymbiotic organisms (lucinid bivalves). Moreover, cylindrical concretions, up to 15 cm in diameter and 1 m long, occur in the chaotic complex and crosscut bedding planes at high angles. The cement of all these lithified portions is mainly dolomite characterized by low delta(13)C values (from -10.3 to -23parts per thousand PDB) and delta(18)O values up to + 7parts per thousand PDB. The delta(13)C values testify to precipitation of carbonates induced by microbial oxidation of methane, whereas the markedly positive delta(18)C signature, ubiquitous in the cylindrical concretions, is the evidence for the presence and destabilization of gas hydrates. The studied section provides a well-exposed example of the geological record of the birth, life, and death of a mud volcano. Unsheared, soft mud breccias represent mud flows along the flanks of the volcano, whereas sheared mud breccias are the result of the injection of unconsolidated overpressured fine-grained sediments, both taking place during ``eruptive'' phases. They were followed by more quiet stages of hemipelagic sedimentation, burrowing, and CH4 seeping. The cylindrical concretions represent the first described ancient example of the chimneys observed in present-day mud-volcano settings. They are the remnants of a cold-seep plumbing network that crosscut the mud volcano edifice. The chimneys were the pathway for the expulsion toward the sea floor of gas- and sediment-charged fluids likely originated from destabilization of methane gas hydrates. The association of mud breccias and methane-derived carbonates may not be due to mass gravity flows but can be primary and, therefore, is a diagnostic criterion for recognizing chaotic deposits due to mud volcano activity in the geological record.
Resumo:
The possible association between the microquasar LS 5039 and the EGRET source 3EG J1824-1514 suggests that microquasars could also be sources of high energy gamma-rays. In this paper, we explore, with a detailed numerical model, if this system can produce the emission detected by EGRET (>100 MeV) through inverse Compton (IC) scattering. Our numerical approach considers a population of relativistic electrons entrained in a cylindrical inhomogeneous jet, interacting with both the radiation and the magnetic fields, taking into account the Thomson and Klein-Nishina regimes of interaction. The computed spectrum reproduces the observed spectral characteristics at very high energy.
Resumo:
The possible associations between the microquasars LS 5039 and LS I +61 303 and the EGRET sources 3EG J1824-1514 and 3EG J0241+6103 suggest that microquasars could also be sources of high-energy gamma-rays. In this work, we present a detailed numerical inverse Compton (IC) model, based on a microquasar scenario, that reproduces the high-energy gamma-ray spectra and variability observed by EGRET for the mentioned sources. Our model considers a population of relativistic electrons entrained in a cylindrical inhomogeneous jet that interact through IC scattering with both the radiation and the magnetic fields.
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in cylindrical coordinates. An important application of this method is the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh consisting of three concentric domains representing the borehole fluid in the center, the borehole casing and the surrounding porous formation. The spatial discretization is based on a Chebyshev expansion in the radial direction, Fourier expansions in the other directions, and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method based on the method of characteristics is used to match the boundary conditions at the fluid/porous-solid and porous-solid/porous-solid interfaces. The viability and accuracy of the proposed method has been tested and verified in 2D polar coordinates through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. The proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is handled adequately.
Resumo:
We investigate adsorption of helium in nanoscopic polygonal pores at zero temperature using a finite-range density functional theory. The adsorption potential is computed by means of a technique denoted as the elementary source method. We analyze a rhombic pore with Cs walls, where we show the existence of multiple interfacial configurations at some linear densities, which correspond to metastable states. Shape transitions and hysterectic loops appear in patterns which are richer and more complex than in a cylindrical tube with the same transverse area.
Resumo:
A phase-field model for dealing with dynamic instabilities in membranes is presented. We use it to study curvature-driven pearling instability in vesicles induced by the anchorage of amphiphilic polymers on the membrane. Within this model, we obtain the morphological changes reported in recent experiments. The formation of a homogeneous pearled structure is achieved by consequent pearling of an initial cylindrical tube from the tip. For high enough concentration of anchors, we show theoretically that the homogeneous pearled shape is energetically less favorable than an inhomogeneous one, with a large sphere connected to an array of smaller spheres.
Resumo:
We present the dynamic velocity profiles of a Newtonian fluid (glycerol) and a viscoelastic Maxwell fluid (CPyCl-NaSal in water) driven by an oscillating pressure gradient in a vertical cylindrical pipe. The frequency range explored has been chosen to include the first three resonance peaks of the dynamic permeability of the viscoelastic-fluid¿pipe system. Three different optical measurement techniques have been employed. Laser Doppler anemometry has been used to measure the magnitude of the velocity at the center of the liquid column. Particle image velocimetry and optical deflectometry are used to determine the velocity profiles at the bulk of the liquid column and at the liquid-air interface respectively. The velocity measurements in the bulk are in good agreement with the theoretical predictions of a linear theory. The results, however, show dramatic differences in the dynamic behavior of Newtonian and viscoelastic fluids, and demonstrate the importance of resonance phenomena in viscoelastic fluid flows, biofluids in particular, in confined geometries.
Resumo:
We have studied the interaction between the low-lying transverse collective oscillations and the thermal excitations of an elongated Bose-Einstein condensate by means of perturbation theory. We consider a cylindrical trapped condensate and calculate the transverse elementary excitations at zero temperature by solving the linearized Gross-Pitaevskii equations in two dimensions (2D). We use them to calculate the matrix elements between the thermal excited states and the quasi-2D collective modes. The Landau damping of transverse collective modes is studied as a function of temperature. At low temperatures, the corresponding damping rate is in agreement with the experimental data for the decay of the transverse quadrupole mode, but it is too small to explain the observed slow decay of the transverse breathing mode. The reason for this discrepancy is discussed.
Resumo:
A new experimental system to measure the equivalent thermal conductivity of a liquid with regard to the Bénard-Rayleigh problem was constructed. The liquid is enclosed within walls of polymethylmethacrylate between two copper plates in which there are thermocouples to measure the difference in temperature between the lower and upper surfaces of the layer of liquid. Heat flux is measured by means of a linear heat fluxmeter consisting of 204 thermocouples in series. The fluxmeter was calibrated and the linear relationship that exists between the heat flux and the emf generated was verified. The thermal conductivity of the polymethylmethacrylate employed was measured and measurements of the equivalent conductivity in cylindrical boundaries of two silicone oils were made. The critical value of the temperature difference and the contribution of the convective process to the transmission of heat were determined.
Resumo:
We have analyzed a two-dimensional lattice-gas model of cylindrical molecules which can exhibit four possible orientations. The Hamiltonian of the model contains positional and orientational energy interaction terms. The ground state of the model has been investigated on the basis of Karl¿s theorem. Monte Carlo simulation results have confirmed the predicted ground state. The model is able to reproduce, with appropriate values of the Hamiltonian parameters, both, a smectic-nematic-like transition and a nematic-isotropic-like transition. We have also analyzed the phase diagram of the system by mean-field techniques and Monte Carlo simulations. Mean-field calculations agree well qualitatively with Monte Carlo results but overestimate transition temperatures.
Resumo:
We present a general class of solutions to Einstein's field equations with two spacelike commuting Killing vectors by assuming the separation of variables of the metric components. The solutions can be interpreted as inhomogeneous cosmological models. We show that the singularity structure of the solutions varies depending on the different particular choices of the parameters and metric functions. There exist solutions with a universal big-bang singularity, solutions with timelike singularities in the Weyl tensor only, solutions with singularities in both the Ricci and the Weyl tensors, and also singularity-free solutions. We prove that the singularity-free solutions have a well-defined cylindrical symmetry and that they are generalizations of other singularity-free solutions obtained recently.
Resumo:
We consider all generalized soliton solutions of the Einstein-Rosen form in the cylindrical context. They are Petrov type-I solutions which describe solitonlike waves interacting with a line source placed on the symmetry axis. Some of the solutions develop a curvature singularity on the axis which is typical of massive line sources, whereas others just have the conical singularity revealing the presence of a static cosmic string. The analysis is based on the asymptotic behavior of the Riemann and metric tensors, the deficit angle, and a C-velocity associated to Thornes C-energy. The C-energy is found to be radiated along the null directions.
Resumo:
This review paper deals with the geology of the NW Indian Himalaya situated in the states of Jammu and Kashmir, Himachal Pradesh and Garhwal. The models and mechanisms discussed, concerning the tectonic and metamorphic history of the Himalayan range, are based on a new compilation of a geological map and cross sections, as well as on paleomagnetic, stratigraphic, petrologic, structural, metamorphic, thermobarometric and radiometric data. The protolith of the Himalayan range, the North Indian flexural passive margin of the Neo-Tethys ocean, consists of a Lower Proterozoic basement, intruded by 1.8-1.9 Ga bimodal magmatites, overlain by a horizontally stratified sequence of Upper Proterozoic to Paleocene sediments, intruded by 470-500 Ma old Ordovician mainly peraluminous s-type granites, Carboniferous tholeiitic to alkaline basalts and intruded and overlain by Permian tholeiitic continental flood basalts. No elements of the Archaen crystalline basement of the South Indian shield have been identified in the Himalayan range. Deformation of the Himalayan accretionary wedge resulted from the continental collision of India and Asia beginning some 65-55 Ma ago, after the NE-directed underthrusting of the Neo-Tethys oceanic crust below Asia and the formation of the Andean-type 103-50 (-41) Ma old Ladakh batholith to the north of the Indus Suture. Cylindrical in geometry, the Himalayan range consists, from NE to SW, from older to younger tectonic elements, of the following zones: 1) The 25 km wide Ladakh batholith and the Asian mantle wedge form the backstop of the growing Himalayan accretionary wedge. 2) The Indus Suture zone is composed of obducted slices of the oceanic crust, island arcs, like the Dras arc, overlain by Late Cretaceous fore arc basin sediments and the mainly Paleocene to Early Eocene and Miocene epi-sutural intra-continental Indus molasse. 3) The Late Paleocene to Eocene North Himalayan nappe stack, up to 40 km thick prior to erosion, consists of Upper Proterozoic to Paleocene rocks, with the eclogitic and coesite bearing Tso Morari gneiss nappe at its base. It includes a branch of the Central Himalayan detachment, the 22-18 Ma old Zanskar Shear zone that is intruded and dated by the 22 Ma Gumburanjun leucogranite; it reactivates the frontal thrusts of the SW-verging North Himalayan nappes. 4) The late Eocene-Miocene SW-directed High Himalayan or ``Crystalline'' nappe comprises Upper Proterozoic to Mesozoic sediments and Ordovician granites, identical to those of the North Himalayan nappes. The Main Central thrust at its base was created in a zone of Eocene to Early Oligocene anatexis by ductile detachment of the subducted Indian crust, below the pre-existing 25-35 km thick NE-directed Shikar Beh and SW-directed North Himalayan nappe stacks. 5) The late Miocene Lesser Himalayan thrust with the Main Boundary Thrust at its base consists of early Proterozoic to Cambrian rocks intruded by 1.8-1.9 Ga bimodal magmatites. The Subhimalaya is a thrust wedge of Himalayan fore deep basin sediments, composed of the Early Eocene marine Subathu marls and sandstones as well as the up to 8'000 m-thick Miocene to recent Ganga molasse, a coarsening upwards sequence of shales, sandstones and conglomerates. The active frontal thrust is covered by the sediments of the Indus-Ganga plains.
Resumo:
The centrifugal liquid membrane (CLM) cell has been utilized for chiroptical studies of liquid-liquid interfaces with a conventional circular dichroism (CD) spectropolarimeter. These studies required the characterization of optical properties of the rotating cylindrical CLM glass cell, which was used under the high speed rotation. In the present study, we have measured the circular and linear dichroism (CD and LD) spectra and the circular and linear birefringence (CB and LB) spectra of the CLM cell itself as well as those of porphyrine aggregates formed at the liquid-liquid interface in the CLM cell, applying Mueller matrix measurement method. From the results, it was confirmed that the CLM-CD spectra of the interfacial porphyrin aggregates observed by a conventional CD spectropolarimeter should be correct irrespective of LD and LB signals in the CLM cell.