947 resultados para cyclin dependent kinase 5
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Der erste Teil dieser Arbeit befasst sich mit der Kinetik der Reaktion des OH-Radikals mit Glykolaldehyd (HOCH2CHO). Die Geschwindigkeitskonstante k1 wurde für diese Reaktion temperaturabhängig bestimmt. Durch gepulste Photolyse wurden OH-Radikale erzeugt. Anschließend wurde die laserinduzierte Fluoreszenz der OH-Radikale bei 309 nm detektiert. Die ermittelte Geschwindigkeitskonstante k1 für die Reaktion von OH mit HOCH2CHO von (8,0 ± 0,8) x 10-12 cm3 Teilchen-1 s-1 erweist sich für den Temperaturbereich von 240 K < T < 362 K als temperaturunabhängig. Zwischen 60 und 250 Torr kann zudem keine Druckabhängigkeit für k1 beobachtet werden. Die unerwartet niedrigere Geschwindigkeitskonstante für die betrachtete Reaktion im Vergleich zur Reaktion von OH mit CH3CHO konnte anhand von Überlegungen zur Korrelation zwischen der C-H-Bindungsstärke und dem H-Abstraktionskanal erklärt werden. Im zweiten Teil dieser Arbeit wurde die Photochemie von Aceton (CH3C(O)CH3), Methylethylketon (C2H5C(O)CH3, MEK) und Acetylbromid (CH3C(O)Br) betrachtet. Für die Photolyse von Aceton (bei 248 nm und 266 nm), MEK (bei 248 nm) und Acetylbromid (bei 248 nm) wurden bei 298 ± 3 K druckabhängig zwischen 5 und 1600 Torr N2 Quantenausbeuten für die Methylbildung (Phi(CH3)) bestimmt. Nach gepulster Photolyse der betrachteten Moleküle wurden die transienten Absorptionssignale der Methylradikale bei 216,4 nm verfolgt. Die Quantenausbeuten wurden relativ zur Photolyse von Methyliodid (CH3I) unter gleichen Reaktionsbedingungen ermittelt. Die erhaltenen Quantenausbeuten für CH3-Radikale nehmen für die beiden Systeme Aceton / 248 nm (Phi(CH3, Aceton) = 1,42 – 0,99) und MEK / 248 nm (Phi(CH3, MEK) = 0,45 – 0,19) druckabhängig zu hohen Drücken ab. Die Druckabhängigkeit von Phi(CH3) wird auf die Konkurrenz zwischen Stoßrelaxation und Dissoziation der schwingungsangeregten Acetylradikale (CH3CO#) zurückgeführt. Für das System Aceton / 266 nm wird keine Druckabhängigkeit von Phi(CH3) = 0,93 ± 0,1 beobachtet. Dies wird damit erklärt, dass CH3CO# nicht genügend Energie besitzt, um die Barriere zur Dissoziation zu überschreiten. Bei der Photolyse von Acetylbromid bei 248 nm wird druckunabhängig Phi(CH3) = 0,92 ± 0,10 bestimmt. In diesem System dissoziieren die schwingungsangeregten Acetylradikale bei allen Drücken vollständig. Bei 266 nm wurde die Gesamtquantenausbeute für die Photodissoziation von Aceton (Phi(diss, 266nm)) bestimmt. Die nach Photolyse erhaltenen Methyl - und Acetylradikale wurden nach Titration mit Br2 durch die Resonanzfluoreszenz der Bromatome detektiert. Phi(diss, 266nm) wurde mit 0,92 ± 0,07 bestimmt.
Resumo:
Maligne Melanome sind gegenüber Chemotherapeutika relativ resistent. Das methylierende Alkylanz Temozolomid sowie das chlorethylierende und DNA-Interstrand Crosslink (ICL) bildende Alkylanz Fotemustin kommen bei der Behandlung des malignen Melanoms als Mittel erster Wahl zum Einsatz. In der vorliegenden Arbeit konnte das erste Mal nachgewiesen werden, dass die zytotoxische Wirkung von Temozolomid und Fotemustin in Melanomzellen durch Apoptose vermittelt wird. Unter Verwendung klinisch relevanter Dosen der beiden Alkylantien konnte die Induktion von Apoptose durch vier unabhängige Methoden (Bestimmung der SubG1-Fraktion und der Apoptose- / Nekrose-Frequenz, Aktivierung der Effektorcaspasen-3 und -7 sowie Spaltung von PARP-1) nachgewiesen werden. Die Alkylierungen an der O6-Position des Guanins, welche durch beide Agenzien induziert werden, sind auch in Melanomzellen die wichtigsten Zytotoxizität-bewirkenden Läsionen in der DNA, und die O6-Methylguanin-DNA-Methyltransferase (MGMT) ist folglich ein herausragender Resistenzmarker. Eine der verwendeten Zelllinien (D05) exprimierte p53-Wildtypprotein. Diese Zelllinie war resistenter als alle anderen Zelllinien gegenüber Temozolomid und Fotemustin. Dies weist darauf hin, dass p53 nicht die Apoptoseinduktion in Melanomzellen verstärkt. Die Prozessierung des O6MeG erfolgt über die Mismatch-Reparatur (MMR) unter Generierung von DNA-Doppelstrangbrüchen (DSBs). Die Untersuchung der durch Temozolomid induzierten DSBs, nachgewiesen durch gammaH2AX-Induktion, korrelierte direkt mit der apoptotischen Antwort von Melanomzelllinien und DSBs können somit als eine entscheidende apoptoseauslösende Größe angesehen werden. Eine Resistenz gegenüber dem methylierenden Temozolomid in der Zelllinie MZ7 konnte auf einen Defekt in der MMR-Schadenserkennung auf der Ebene des MutSalpha-Komplexes zurückgeführt werden. Dieser Defekt hatte keinen Einfluss auf die Fotemustin-vermittelte Apoptoseinduktion. Neben MGMT konnte somit die MMR als Resistenzfaktor gegenüber methylierenden Agenzien in Melanomen identifiziert werden. Die Fotemustin-induzierte Apoptose wurde in Melanomzelllinien im Detail untersucht. Es konnte erstmals gezeigt werden, dass Fotemustin-bedingte ICLs in Zellen einen G2/M-Arrest im Behandlungszyklus induzieren. Wie anhand G1-arretierter Zellen nachgewiesen werden konnte, war das Durchlaufen der DNA-Replikation vor Erreichen des Arrests für die Induktion der Apoptose notwendig. Die Prozessierung von ICLs ist im Vergleich zu Methylierungen der DNA deutlich komplexer. Dies könnte erklären, warum in Melanomzellen die durch gammaH2AX-Induktion repräsentierten DSBs nicht mit der Sensitivität der einzelnen Zelllinien korreliert. Die Untersuchung unterschiedlich sensitiver Zelllinien zeigte ein vergleichbares Schadensniveau an ICLs und eine ebenso vergleichbare initiale Prozessierung derselben unter Generierung von DSBs. Die Prozessierung dieser sekundären Läsionen, welche anhand der Abnahme von gammaH2AX-Foci untersucht wurde, war hingegen in der sensitiveren Melanomzelllinie deutlich weniger effektiv. Es konnte weiterhin nachgewiesen werden, dass eine uneffektive Prozessierung der sekundären Läsionen einhergeht mit einer verstärkten und länger anhaltenden Aktivierung der in der DSB-Detektion beteiligten Kinase ATM und der Checkpoint Kinase 1. Es wäre daher denkbar, dass eine verstärkte Aktivität dieser Kinasen proapoptotische Signale vermittelt. Unterschiede in der Prozessierung der sekundären Läsionen könnten somit ein wichtiger Marker der ICL-induzierten Apoptose darstellen. Des weitern konnte nachgewiesen werden, dass nach Fotemustingabe die mitochondrial-vermittelte Apoptose einen effektiven Exekutionsweg in Melanomen darstellt. Während Cytochrom C-Freigabe, Bcl-2-Abnahme an den Mitochondrien, Bax-Rekrutierung und Caspase-9 Aktivität nachgewiesen werden konnten, wurden keine Hinweise auf eine Fas-Rezeptor-vermittelte Apoptose gefunden. Die Unfähigkeit, Rezeptor-vermittelte Apoptose zu unterlaufen, könnte die Bedeutungslosigkeit des p53-Gens in Melanomen begründen, da gerade dieser Weg in der Alkylantien-induzierten Apoptose in anderen Zellsystemen eine große Relevanz besitzt. Bei der Suche nach einem alternativen proapoptotischen Signalweg konnten Hinweise für die Beteiligung des Rb/E2F-1-Wegs, welcher über p73 agiert, in einer p53-mutierten Melanomzelllinie gefunden werden. Einen Einfluss der Proteine Survivin und XIAP als Resistenzfaktoren auf die Fotemustin-induzierte Apoptose wurde hingegen nicht nachgewiesen.
Resumo:
Children with attention-deficit/hyperactivity disorder (ADHD) have a higher rate of obesity than children without ADHD. Obesity risk alleles may overlap with those relevant for ADHD. We examined whether risk alleles for an increased body mass index (BMI) are associated with ADHD and related quantitative traits (inattention and hyperactivity/impulsivity). We screened 32 obesity risk alleles of single nucleotide polymorphisms (SNPs) in a genome-wide association study (GWAS) for ADHD based on 495 patients and 1,300 population-based controls and performed in silico analyses of the SNPs in an ADHD meta-analysis comprising 2,064 trios, 896 independent cases, and 2,455 controls. In the German sample rs206936 in the NUDT3 gene (nudix; nucleoside diphosphate linked moiety X-type motif 3) was associated with ADHD risk (OR: 1.39; P = 3.4 × 10(-4) ; Pcorr = 0.01). In the meta-analysis data we found rs6497416 in the intronic region of the GPRC5B gene (G protein-coupled receptor, family C, group 5, member B; P = 7.2 × 10(-4) ; Pcorr = 0.02) as a risk allele for ADHD. GPRC5B belongs to the metabotropic glutamate receptor family, which has been implicated in the etiology of ADHD. In the German sample rs206936 (NUDT3) and rs10938397 in the glucosamine-6-phosphate deaminase 2 gene (GNPDA2) were associated with inattention, whereas markers in the mitogen-activated protein kinase 5 gene (MAP2K5) and in the cell adhesion molecule 2 gene (CADM2) were associated with hyperactivity. In the meta-analysis data, MAP2K5 was associated with inattention, GPRC5B with hyperactivity/impulsivity and inattention and CADM2 with hyperactivity/impulsivity. Our results justify further research on the elucidation of the common genetic background of ADHD and obesity.
Resumo:
Insulin receptors are widely distributed in the kidney and affect multiple aspects of renal function. In the proximal tubule, insulin regulates volume and acid-base regulation through stimulation of the Na(+)/H(+) exchanger NHE3. This paper characterizes the signaling pathway by which insulin stimulates NHE3 in a cell culture model [opossum kidney (OK) cell]. Insulin has two distinct phases of action on NHE3. Chronic insulin (24 h) activates NHE3 through the classic phosphatidylinositol 3-kinase-serum- and glucocorticoid-dependent kinase 1 (PI3K-SGK1) pathway as insulin stimulates SGK1 phosphorylation and the insulin effect can be blocked by the PI3K inhibitor wortmannin or a dominant-negative SGK1. We showed that SGK1 transcript and protein are expressed in rat proximal tubule and OK cells. We previously showed that glucocorticoids augment the effect of insulin on NHE3 (Klisic J, Hu MC, Nief V, Reyes L, Fuster D, Moe OW, Ambuhl PM. Am J Physiol Renal Physiol 283: F532-F539, 2002). Part of this can be mediated via induction of SGK1 by glucocorticoids, and indeed the insulin effect on NHE3 can also be amplified by overexpression of SGK1. We next addressed the acute effect of insulin (1-2 h) on NHE3 by systematically examining the candidate signaling cascades and activation mechanisms of NHE3. We ruled out the PI3K-SGK1-Akt and TC10 pathways, increased surface NHE3, NHE3 phosphorylation, NHE3 association with calcineurin homologous protein 1 or megalin as mechanisms of acute activation of NHE3 by insulin. In summary, insulin stimulates NHE3 acutely via yet undefined pathways and mechanisms. The chronic effect of insulin is mediated by the classic PI3K-SGK1 route.
Resumo:
Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.
Resumo:
Expression of the extracellular matrix (ECM) protein tenascin-C is induced in fibroblasts by growth factors as well as by tensile strain. Mechanical stress can act on gene regulation directly, or indirectly via the paracrine release of soluble factors by the stimulated cells. To distinguish between these possibilities for tenascin-C, we asked whether cyclic tensile strain and soluble factors, respectively, induced its mRNA via related or separate mechanisms. When cyclic strain was applied to chick embryo fibroblasts cultured on silicone membranes, tenascin-C mRNA and protein levels were increased twofold within 6 h compared to the resting control. Medium conditioned by strained cells did not stimulate tenascin-C mRNA in resting cells. Tenascin-C mRNA in resting cells was increased by serum; however, cyclic strain still caused an additional induction. Likewise, the effect of TGF-beta1 or PDGF-BB was additive to that of cyclic strain, whereas IL-4 or H2O2 (a reactive oxygen species, ROS) did not change tenascin-C mRNA levels. Antagonists for distinct mitogen-activated protein kinases (MAPK) inhibited tenascin-C induction by TGF-beta1 and PDGF-BB, but not by cyclic strain. Conversely, a specific inhibitor of Rho-dependent kinase strongly attenuated the response of tenascin-C mRNA to cyclic strain, but had limited effect on induction by growth factors. The data suggest that regulation of tenascin-C in fibroblasts by cyclic strain occurs independently from soluble mediators and MAPK pathways; however, it requires Rho/ROCK signaling.
Resumo:
Calmodulin (CaM) is a ubiquitous Ca(2+) buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca(2+)-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca(2+)-CaM-dependent enzymes: Ca(2+)/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca(2+) and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca(2+) ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca(2+) and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca(2+) signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca(2+)-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca(2+) channels, and to the microscopic injection rate of Ca(2+) ions. We also demonstrate that Ca(2+) saturation takes place via two different pathways depending on the Ca(2+) injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca(2+) sensors that can differentially transduce Ca(2+) influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca(2+)-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.
Resumo:
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.
Resumo:
A single mossy fiber input contains several release sites and is located on the proximal portion of the apical dendrite of CA3 neurons. It is, therefore, well suited to exert a strong influence on pyramidal cell excitability. Accordingly, the mossy fiber synapse has been referred to as a detonator or teacher synapse in autoassociative network models of the hippocampus. The very low firing rates of granule cells [Jung, M. W. & McNaughton, B. L. (1993) Hippocampus 3, 165–182], which give rise to the mossy fibers, raise the question of how the mossy fiber synapse temporally integrates synaptic activity. We have therefore addressed the frequency dependence of mossy fiber transmission and compared it to associational/commissural synapses in the CA3 region of the hippocampus. Paired pulse facilitation had a similar time course, but was 2-fold greater for mossy fiber synapses. Frequency facilitation, during which repetitive stimulation causes a reversible growth in synaptic transmission, was markedly different at the two synapses. At associational/commissural synapses facilitation occurred only at frequencies greater than once every 10 s and reached a magnitude of about 125% of control. At mossy fiber synapses, facilitation occurred at frequencies as low as once every 40 s and reached a magnitude of 6-fold. Frequency facilitation was dependent on a rise in intraterminal Ca2+ and activation of Ca2+/calmodulin-dependent kinase II, and was greatly reduced at synapses expressing mossy fiber long-term potentiation. These results indicate that the mossy fiber synapse is able to integrate granule cell spiking activity over a broad range of frequencies, and this dynamic range is substantially reduced by long-term potentiation.
Resumo:
Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by growth retardation, cerebellar ataxia, oculocutaneous telangiectasias, and a high incidence of lymphomas and leukemias. In addition, AT patients are sensitive to ionizing radiation. Atm-deficient mice recapitulate most of the AT phenotype. p21cip1/waf1 (p21 hereafter), an inhibitor of cyclin-dependent kinases, has been implicated in cellular senescence and response to γ-radiation-induced DNA damage. To study the role of p21 in ATM-mediated signal transduction pathways, we examined the combined effect of the genetic loss of atm and p21 on growth control, radiation sensitivity, and tumorigenesis. As might have been expected, our data provide evidence that p21 modifies the in vitro senescent response seen in AT fibroblasts. Further, it is a downstream effector of ATM-mediated growth control. In addition, however, we find that loss of p21 in the context of an atm-deficient mouse leads to a delay in thymic lymphomagenesis and an increase in acute radiation sensitivity in vivo (the latter principally because of effects on the gut epithelium). Modification of these two crucial aspects of the ATM phenotype can be related to an apparent increase in spontaneous apoptosis seen in tumor cells and in the irradiated intestinal epithelium of mice doubly null for atm and p21. Thus, loss of p21 seems to contribute to tumor suppression by a mechanism that operates via a sensitized apoptotic response. These results have implications for cancer therapy in general and AT patients in particular.
Resumo:
Differentiation of trophoblast giant cells in the rodent placenta is accompanied by exit from the mitotic cell cycle and onset of endoreduplication. Commitment to giant cell differentiation is under developmental control, involving down-regulation of Id1 and Id2, concomitant with up-regulation of the basic helix-loop-helix factor Hxt and acquisition of increased adhesiveness. Endoreduplication disrupts the alternation of DNA synthesis and mitosis that maintains euploid DNA content during proliferation. To determine how the mammalian endocycle is regulated, we examined the expression of the cyclins and cyclin-dependent kinases during the transition from replication to endoreduplication in the Rcho-1 rat choriocarcinoma cell line. We cultured these cells under conditions that gave relatively synchronous endoreduplication. This allowed us to study the events that occur during the transition from the mitotic cycle to the first endocycle. With giant cell differentiation, the cells switched cyclin D isoform expression from D3 to D1 and altered several checkpoint functions, acquiring a relative insensitivity to DNA-damaging agents and a coincident serum independence. The initiation of S phase during endocycles appeared to involve cycles of synthesis of cyclins E and A, and termination of S was associated with abrupt loss of cyclin A and E. Both cyclins were absent from gap phase cells, suggesting that their degradation may be necessary to allow reinitiation of the endocycle. The arrest of the mitotic cycle at the onset of endoreduplication was associated with a failure to assemble cyclin B/p34cdk1 complexes during the first endocycle. In subsequent endocycles, cyclin B expression was suppressed. Together these data suggest several points at which cell cycle regulation could be targeted to shift cells from a mitotic to an endoreduplicative cycle.
Resumo:
The myofibrils of cross-striated muscle fibers contain in their M bands cytoskeletal proteins whose main function seems to be the stabilization of the three-dimensional arrangement of thick filaments. We identified two immunoglobin domains (Mp2–Mp3) of M-protein as a site binding to the central region of light meromyosin. This binding is regulated in vitro by phosphorylation of a single serine residue (Ser76) in the immediately adjacent amino-terminal domain Mp1. M-protein phosphorylation by cAMP-dependent kinase A inhibits binding to myosin LMM. Transient transfection studies of cultured cells revealed that the myosin-binding site seems involved in the targeting of M-protein to its location in the myofibril. Using the same method, a second myofibril-binding site was uncovered in domains Mp9–Mp13. These results support the view that specific phosphorylation events could be also important for the control of sarcomeric M band formation and remodeling.
Resumo:
The protein p21Cip1, Waf1, Sdi1 is a potent inhibitor of cyclin-dependent kinases (CDKs). p21 can also block DNA replication through its interaction with the proliferating cell nuclear antigen (PCNA), which is an auxiliary factor for polymerase δ. PCNA is also implicated in the repair resynthesis step of nucleotide excision repair (NER). Previous studies have yielded contradictory results on whether p21 regulates NER through its interaction with PCNA. Resolution of this controversy is of interest because it would help understand how DNA repair and replication are regulated. Hence, we have investigated the effect of p21 on NER both in vitro and in vivo using purified fragments of p21 containing either the CDK-binding domain (N terminus) or the PCNA binding domain (C terminus) of the protein. In the in vitro studies, DNA repair synthesis was measured in extracts from normal human fibroblasts using plasmids damaged by UV irradiation. In the in vivo studies, we used intact and permeabilized cells. The results show that the C terminus of the p21 protein inhibits NER both in vitro and in vivo. These are the first in vivo studies in which this question has been examined, and we demonstrate that inhibition of NER by p21 is not merely an artificial in vitro effect. A 50% inhibition of in vitro NER occurred at a 50:1 molar ratio of p21 C-terminus fragment to PCNA monomer. p21 differentially regulates DNA repair and replication, with repair being much less sensitive to inhibition than replication. Our in vivo results suggest that the inhibition occurs at the resynthesis step of the repair process. It also appears that preassembly of PCNA at repair sites mitigates the inhibitory effect of p21. We further demonstrate that the inhibition of DNA repair is mediated via binding of p21 to PCNA. The N terminus of p21 had no effect on DNA repair, and the inhibition of DNA repair by the C terminus of p21 was relieved by the addition of purified PCNA protein.
Resumo:
Numerous studies have implicated the pRB family of nuclear proteins in the control of cell cycle progression. Although over-expression experiments have revealed that each of these proteins, pRB, p107, and p130, can induce a G1 cell cycle arrest, mouse knockouts demonstrated distinct developmental requirements for these proteins, as well as partial functional redundancy between family members. To study the mechanism by which the closely related pRB family proteins contribute to cell cycle progression, we generated 3T3 fibroblasts derived from embryos that lack one or more of these proteins (pRB−/−, p107−/−, p130−/−, pRB−/−/p107−/−, pRB−/−/p130−/−, and p107−/−/p130−/−). By comparing the growth and cell cycle characteristics of these cells, we have observed clear differences in the manner in which they transit through the G1 and S phases as well as exit from the cell cycle. Deletion of Rb, or more than one of the family members, results in a shortening of G1 and a lengthening of S phase, as well as a reduction in growth factor requirements. In addition, the individual cell lines showed differential regulation of a subset of E2F-dependent gene promoters, as well as differences in cell cycle-dependent kinase activity. Taken together, these observations suggest that the closely related pRB family proteins affect cell cycle progression through distinct biochemical mechanisms and that their coordinated action may contribute to their diverse functions in various physiological settings.