916 resultados para current controlled voltage-source inverter
Resumo:
Technical analysis of Low Voltage Direct Current (LVDC) distribution systems shows that in LVDC transmission the customer voltage quality is higher. One of the problems in LVDC distribution networks that converters both ends of the DC line are required. Because of the converters produce not pure DC voltage, but some fluctuations as well, the huge electrolytic capacitors are required to reduce voltage distortions in the DC-side. This thesis master’s thesis is focused on calculating required DC-link capacitance for LVDC transmission and estimation of the influence of different parameters on the voltage quality. The goal is to investigate the methods of the DC-link capacitance estimation and location in the transmission line.
Resumo:
Acacia mearnsii de Wild (black wattle) is one of the most important trees planted in Southern Brazil for tannin extraction and charcoal production. The pyrolysis of the black wattle wood used for obtaining charcoal is performed in brick ovens, with the gas fraction being sent directly into the environment. The present study examines the condensable compounds present in the liquor produced from black wattle wood at different thermal degradation conditions, using gas chromatography coupled with mass spectrometry (GC/MS). Branches of black wattle were thermally degraded at controlled ambient and temperature conditions. Overall, a higher variety of compounds were obtained under atmospheric air pressure than under synthetic air pressure. Most of the tentatively identified compounds, such as carboxylic acids, phenols, aldehydes, and low molecular mass lignin fragments, such as guayacol, syringol, and eugenol, were products of lignin thermoconversion. Substituted aromatic compounds, such as vanillin, ethyl vanillin, and 2-methoxy-4-propeny-phenol, were also identified. At temperatures above 200 ºC, furan, 2-acetylfuran, methyl-2-furoate, and furfural, amongst others, were identified as polysaccharide derivatives from cellulose and hemicellulose depolymerization. This study evidences the need for adequate management of the condensable by-products of charcoal production, both for economic reasons and for controlling their potential environmental impact.
Resumo:
Multilevel converters provide an attractive solution to bring the benefits of speed-controlled rotational movement to high-power applications. Therefore, multilevel inverters have attracted wide interest in both the academic community and in the industry for the past two decades. In this doctoral thesis, modulation methods suitable especially for series connected H-bridge multilevel inverters are discussed. A concept of duty cycle modulation is presented and its modification is proposed. These methods are compared with other well-known modulation schemes, such as space-vector pulse width modulation and carrier-based modulation schemes. The advantage of the modified duty-cycle modulation is its algorithmic simplicity. A similar mathematical formulation for the original duty cycle modulation is proposed. The modified duty cycle modulation is shown to produce well-formed phase-to-neutral voltages that have lower total harmonic distortion than the space-vector pulse width modulation and the duty cycle modulation. The space-vector-based solution and the duty cycle modulation, on the other hand, result in a better-quality line-to-line voltage and current waveform. The voltage of the DC links in the modules of the series-connected H-bridge inverter are shown to fluctuate while they are under load. The fluctuation causes inaccuracies in the voltage production, which may result in a failure of the flux estimator in the controller. An extension for upper-level modulation schemes, which changes the switching instants of the inverter so that the output voltage meets the reference voltage accurately regardless of the DC link voltages, is proposed. The method is shown to reduce the error to a very low level when a sufficient switching frequency is used. An appropriate way to organize the switching instants of the multilevel inverter is to make only one-level steps at a time. This causes restrictions on the dynamical features of the modulation schemes. The produced voltage vector cannot be rotated several tens of degrees in a single switching period without violating the above-mentioned one-level-step rule. The dynamical capabilities of multilevel inverters are analyzed in this doctoral thesis, and it is shown that the multilevel inverters are capable of operating even in dynamically demanding metal industry applications. In addition to the discussion on modulation schemes, an overvoltage in multilevel converter drives caused by cable reflection is addressed. The voltage reflection phenomenon in drives with long feeder cables causes premature insulation deterioration and also affects the commonmode voltage, which is one of the main reasons for bearing currents. Bearing currents, on the other hand, cause fluting in the bearings, which results in premature bearing failure. The reflection phenomenon is traditionally prevented by filtering, but in this thesis, a modulationbased filterless method to mitigate the overvoltage in multilevel drives is proposed. Moreover, the mitigation method can be implemented as an extension for upper-level modulation schemes. The method exploits the oscillations caused by two consecutive voltage edges so that the sum of the oscillations results in a mitigated peak of the overvoltage. The applicability of the method is verified by simulations together with experiments with a full-scale prototype.
Resumo:
The demand for electricity is constantly growing in contemporary world and, in the same time, quality and reliability requirements are becoming more rigid. In addition, renewable sources of energy have been widely introduced for power generation, and they create specific challenges for the network. Consequently, new solution for distribution system is required, and Low Voltage Direct Current (LVDC) system is the proposed one. This thesis focuses on the investigation of specific cable features for low voltage direct current (LVDC) distribution system. The LVDC system is public ±750 VDC distribution system, which is currently being developed at Lappeen-ranta University of Technology. The aspects, considered in the thesis, are reliable and economic power transmission in distribution networks and possible power line communication in the LVDC cable.
Resumo:
Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.
Resumo:
Parallel-connected photovoltaic inverters are required in large solar plants where it is not economically or technically reasonable to use a single inverter. Currently, parallel inverters require individual isolating transformers to cut the path for the circulating current. In this doctoral dissertation, the problem is approached by attempting to minimize the generated circulating current. The circulating current is a function of the generated common-mode voltages of the parallel inverters and can be minimized by synchronizing the inverters. The synchronization has previously been achieved by a communication link. However, in photovoltaic systems the inverters may be located far apart from each other. Thus, a control free of communication is desired. It is shown in this doctoral dissertation that the circulating current can also be obtained by a common-mode voltage measurement. A control method based on a short-time switching frequency transition is developed and tested with an actual photovoltaic environment of two parallel inverters connected to two 5 kW solar arrays. Controls based on the measurement of the circulating current and the common-mode voltage are generated and tested. A communication-free method of controlling the circulating current between parallelconnected inverters is developed and verified.
Resumo:
Today, renewable energy technologies and modern power electronics have made it feasible to implement low voltage direct current (LVDC) microgrids (MGs) ca-pable to island operation. Such LVDC networks are particularly useful in remote areas. However, there are still pending issues in island operated LVDC MGs like electrical safety and controlled operation, which should be addressed before wide-scale implementation. This thesis is focused on the overall protection of an island operated LVDC network concept, including protection against electrical shocks, mains equipment protection and protection of photovoltaic (PV) power sources and battery energy storage systems (BESSs). The topic is approached through ex-amination of the safety hazards and the appropriate methods to protect against them, comprising considerations for earthing system selection and realisation of the protection system.
Resumo:
In this bachelor’s thesis are examined the benefits of current distortion detection device application in customer premises low voltage networks. The purpose of this study was to find out if there are benefits for measuring current distortion in low-voltage residential networks. Concluding into who can benefit from measuring the power quality. The research focuses on benefits based on the standardization in Europe and United States of America. In this research, were also given examples of appliances in which current distortion detection device could be used. Along with possible illustration of user interface for the device. The research was conducted as an analysis of the benefits of current distortion detection device in residential low voltage networks. The research was based on literature review. The study was divided to three sections. The first explain the reasons for benefitting from usage of the device and the second portrays the low-cost device, which could detect one-phase current distortion, in theory. The last section discuss of the benefits of usage of current distortion detection device while focusing on the beneficiaries. Based on the result of this research, there are benefits from usage to the current distortion detection device. The main benefitting party of the current distortion detection device was found to be manufactures, as they are held responsible of limiting the current distortion on behalf of consumers. Manufactures could adjust equipment to respond better to the distortion by having access to on-going current distortion in network. The other benefitting party are system operators, who would better locate distortion issues in low-voltage residential network to start prevention of long-term problems caused by current distortion early on.
Resumo:
Aquaculture is a form of agriculture that involves the propagation, cultivation and marketing of aquatic plants and animals in a controlled environment (Swann, 1992). After growing steadily, particularly in the last four decades, aquaculture is for the first time set to contribute half of the fish consumed by the human population worldwide. Given the projected population growth over the next two decades, it is estimated that at least an additional 40 million tonnes of aquatic food will be required by 2030 to maintain the current per capita consumption (FAO, 2006). Capture fisheries and aquaculture supplied the world with about 110 million tonnes of food fish in 2006. Of this total, aquaculture accounted for 47 percent (FAO, 2009). Globally, penaeid shrimp culture ranks sixth in terms of quantity and second in terms of value amongst all taxonomic groups of aquatic animals cultivated (FAO, 2006). In places where warm-water aquaculture was possible black tiger shrimp, Penaeus monodon became the preferred variety of shrimp cultivar owing to its fast growth, seed availability and importantly due to high prices it fetches (Pechmanee, 1997). World shrimp production is dominated by P.monodon, which accounted for more than 50 % of the production in 1999 (FAO, 2000). In the last few years the whiteleg shrimp, Litopenaeus vannamei, has replaced P.monodon in many countries. Indian shrimp culture is dominated by P.monodon with the East Coast accounting for 70% of the production (Hein, 2002). Intensive culture, apart from other problems, results in enhanced susceptibility of the cultured species to diseases (Jory, 1997), which in fact have become the biggest constraint in shrimp aquaculture (FAO, 2003).
Resumo:
This paper presents and compares two approaches to estimate the origin (upstream or downstream) of voltage sag registered in distribution substations. The first approach is based on the application of a single rule dealing with features extracted from the impedances during the fault whereas the second method exploit the variability of waveforms from an statistical point of view. Both approaches have been tested with voltage sags registered in distribution substations and advantages, drawbacks and comparative results are presented
Resumo:
This thesis proposes a framework for identifying the root-cause of a voltage disturbance, as well as, its source location (upstream/downstream) from the monitoring place. The framework works with three-phase voltage and current waveforms collected in radial distribution networks without distributed generation. Real-world and synthetic waveforms are used to test it. The framework involves features that are conceived based on electrical principles, and assuming some hypothesis on the analyzed phenomena. Features considered are based on waveforms and timestamp information. Multivariate analysis of variance and rule induction algorithms are applied to assess the amount of meaningful information explained by each feature, according to the root-cause of the disturbance and its source location. The obtained classification rates show that the proposed framework could be used for automatic diagnosis of voltage disturbances collected in radial distribution networks. Furthermore, the diagnostic results can be subsequently used for supporting power network operation, maintenance and planning.
Resumo:
Voltage-dependent Ca2+ channels (VDCCs) have emerged as targets to treat neuropathic pain; however, amongst VDCCs, the precise role of the CaV2.3 subtype in nociception remains unproven. Here, we investigate the effects of partial sciatic nerve ligation (PSNL) on Ca2+ currents in small/medium diameter dorsal root ganglia (DRG) neurones isolated from CaV2.3(−/−) knock-out and wild-type (WT) mice. DRG neurones from CaV2.3(−/−) mice had significantly reduced sensitivity to SNX-482 versusWTmice. DRGs from CaV2.3(−/−) mice also had increased sensitivity to the CaV2.2 VDCC blocker -conotoxin. In WT mice, PSNL caused a significant increase in -conotoxin-sensitivity and a reduction in SNX-482-sensitivity. In CaV2.3(−/−) mice, PSNL caused a significant reduction in -conotoxin-sensitivity and an increase in nifedipine sensitivity. PSNL-induced changes in Ca2+ current were not accompanied by effects on voltagedependence of activation in either CaV2.3(−/−) or WT mice. These data suggest that CaV2.3 subunits contribute, but do not fully underlie, drug-resistant (R-type) Ca2+ current in these cells. In WT mice, PSNL caused adaptive changes in CaV2.2- and CaV2.3-mediated Ca2+ currents, supporting roles for these VDCCs in nociception during neuropathy. In CaV2.3(−/−) mice, PSNL-induced changes in CaV1 and CaV2.2 Ca2+ current, consistent with alternative adaptive mechanisms occurring in the absence of CaV2.3 subunits.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)