995 resultados para coupled concentric quantum double ring
Resumo:
We reported previously that Go-deficient mice develop severe neurological defects that include hyperalgesia, a generalized tremor, lack of coordination, and a turning syndrome somewhat reminiscent of unilateral lesions of the dopaminergic nigro-striatal pathway. By using frozen coronal sections of serially sectioned brains of normal and Go-deficient mice, we studied the ability of several G protein coupled receptors to promote binding of GTPγS to G proteins and the ability of GTP to promote a shift in the affinity of D2 dopamine receptor for its physiologic agonist dopamine. We found a generalized, but not abolished reduction in agonist-stimulated binding of GTPγS to frozen brain sections, with no significant left–right differences. Unexpectedly, the ability of GTP to regulate the binding affinity of dopamine to D2 receptors (as seen in in situ [35S]sulpiride displacement curves) that was robust in control mice, was absent in Go-deficient mice. The data suggest that most of the effects of the Gi/Go-coupled D2 receptors in the central nervous system are mediated by Go instead of Gi1, Gi2, or Gi3. In agreement with this, the effect of GTP on dopamine binding to D2 receptors in double Gi1 plus Gi2- and Gi1 plus Gi3-deficient mice was essentially unaffected.
Resumo:
Structures of Watson-Crick base paired 15-nucleobase oligomer strands in A-type or B-type conformation in which one strand [a strand of alternating nucleotide and riboacetal thymidine nucleoside (RT) units, RP] is DNA and the other is composed of alternating nucleotides and riboacetal nucleosides have been studied by molecular mechanics. Analogously, oligomer strands of RNA in place of DNA have been modeled. The calculations indicate that the RP strand is more stable when complexed in an A-type duplex relative to a B-type form and that this conformational preference is presumably due to the more uniform nature of the former. Nearly planar ribose rings were more commonly observed in the minimized structures of the B-type DNA.RP duplexes as compared with A-type duplexes, despite the fact that planar ribofuranose rings are known to be energetically unfavorable in oligonucleotides. Computed relative stabilities of all duplexes containing the RP strand suggest that such heteroduplexes are less stable than the corresponding double-stranded DNA and double-stranded RNA species. These findings are in agreement with experimental results which show, when equivalent sequences were compared, that a DNA.RNA control forms a more stable duplex than RP hound to a complementary single-stranded RNA strand. In contrast, molecular mechanics studies of complementary triple-helical (DNA)2.RP, (DNA)2.DNA, and (DNA)2.RNA structures indicate that the binding of RP as a Hoogsteen strand stabilizes the underlying duplex to a greater extent compared with native oligonucleotides. These calculations suggest that puckering of the ribose ring in the riboacetal linkage leads to a more favorable interaction with a complementary nucleic acid target than the proposed planar geometry and that this puckering may account for the enhanced binding of RP to a double-stranded target.
Resumo:
Accurate quantum mechanical simulations of the primary charge transfer in photosynthetic reaction centers are reported. The process is modeled by three coupled electronic states corresponding to the photoexcited chlorophyll special pair (donor), the reduced bacteriopheophytin (acceptor), and the reduced accessory chlorophyll (bridge) that interact with a dissipative medium of protein and solvent degrees of freedom. The time evolution of the excited special pair is followed over 17 ps by using a fully quantum mechanical path integral scheme. We find that a free energy of the reduced accessory chlorophyll state approximately equal to 400 cm(-1) lower than that of the excited special pair state yields state populations in agreement with experimental results on wild-type and modified reaction centers. For this energetic configuration electron transfer is a two-step process.
Resumo:
Foi preparada uma série de quatro betalaínas com o objetivo de determinar o efeito da metilação do nitrogênio imínico e da presença de uma hidroxila fenólica na posição 3 do anel aromático sobre a estabilidade e propriedades antirradicalares, fotofísicas e redox desta classe de pigmentos vegetais. O estudo destes compostos, chamados de m-betalainofenol, N-metil-m-betalainofenol, fenilbetalaína e N-metil-fenilbetalaína, revelou que os derivados metilados apresentam um deslocamento hipsocrômico sutil dos máximos de absorção e fluorescência em relação aos compostos não metilados. Os deslocamentos de Stokes são maiores em cerca de 4 kJ mol-1 para os derivados metilados e os rendimentos quânticos de fluorescência cerca de três vezes menores. A hidrólise destas betalaínas foi investigada na faixa de pH entre 3 e 7. Todas as betalaínas são mais persistentes em pH = 6 e a metilação da porção imínica aumenta significativamente a estabilidade da betalaína em meio aquoso. A presença da porção fenólica, em comparação a um grupo fenila, não afeta as propriedades fotofísicas dos compostos e tem um efeito menos pronunciado do que o da metilação sobre a estabilidade destes em meio aquoso. O comportamento eletroquímico dos compostos foi estudado por voltametria cíclica, nas mesmas condições de pH. A N-metilação foi novamente mais significativa do que a hidroxilação, provocando aumento de até 200 mV no potencial de pico anódico. O aumento do pH diminuiu o potencial de pico anódico dos quatro compostos, com uma razão entre prótons e elétrons igual a 1 para a maioria dos picos. A capacidade antirradicalar foi quantificada pelo ensaio colorimétrico TEAC baseado na redução de ABTS•+. Os dois derivados N-metilados apresentaram, em média, o mesmo valor de TEAC, apesar de um ser fenólico e o outro não. Já entre os não metilados, que têm TEAC de 2 a 3 unidades inferior à dos outros, a presença do fenol provoca elevação da capacidade antirradicalar. Os resultados sugerem a participação dos elétrons do anel 1,2,3,4-tetraidropiridínico, acoplados ao próton do nitrogênio imínico na ação antirradicalar de betalaínas.
Resumo:
We consider the electronic transport through a Rashba quantum dot coupled to ferromagnetic leads. We show that the interference of localized electron states with resonant electron states leads to the appearance of the Fano-Rashba effect. This effect occurs due to the interference of bound levels of spin-polarized electrons with the continuum of electronic states with an opposite spin polarization. We investigate this Fano-Rashba effect as a function of the applied magnetic field and Rashba spin-orbit coupling.
Resumo:
A systematic study on the influence of carbon on the signal of a large number of hard-to-ionize elements (i.e. B, Be, P, S, Zn, As, Se, Pd, Cd, Sb, I, Te, Os, Ir, Pt, Au, and Hg) in inductively coupled plasma–mass spectrometry has been carried out. To this end, carbon matrix effects have been evaluated considering different plasma parameters (i.e. nebulizer gas flow rate, r.f. power and sample uptake rate), sample introduction systems, concentration and type of carbon matrix (i.e. glycerol, citric acid, potassium citrate and ammonium carbonate) and type of mass spectrometer (i.e. quadrupole filter vs. double-focusing sector field mass spectrometer). Experimental results show that P, As, Se, Sb, Te, I, Au and Hg sensitivities are always higher for carbon-containing solutions than those obtained without carbon. The other hard-to-ionize elements (Be, B, S, Zn, Pd, Cd, Os, Ir and Pt) show no matrix effect, signal enhancement or signal suppression depending on the experimental conditions selected. The matrix effects caused by the presence of carbon are explained by changes in the plasma characteristics and the corresponding changes in ion distribution in the plasma (as reflected in the signal behavior plot, i.e. the signal intensity as a function of the nebulizer gas flow rate). However, the matrix effects for P, As, Se, Sb, Te, I, Au and Hg are also related to an increase in analyte ion population caused as a result of charge transfer reactions involving carbon-containing charged species in the plasma. The predominant specie is C+, but other species such as CO+, CO2+, C2+ and ArC+ could also play a role. Theoretical data suggest that B, Be, S, Pd, Cd, Os, Ir and Pt could also be involved in carbon based charge transfer reactions, but no experimental evidence substantiating this view has been found.
Resumo:
The influence of the sample introduction system on the signals obtained with different tin compounds in inductively coupled plasma (ICP) based techniques, i.e., ICP atomic emission spectrometry (ICP–AES) and ICP mass spectrometry (ICP–MS) has been studied. Signals for test solutions prepared from four different tin compounds (i.e., tin tetrachloride, monobutyltin, dibutyltin and di-tert-butyltin) in different solvents (methanol 0.8% (w/w), i-propanol 0.8% (w/w) and various acid matrices) have been measured by ICP–AES and ICP–MS. The results demonstrate a noticeable influence of the volatility of the tin compounds on their signals measured with both techniques. Thus, in agreement with the compound volatility, the highest signals are obtained for tin tetrachloride followed by di-tert-butyltin/monobutyltin and dibutyltin. The sample introduction system exerts an important effect on the amount of solution loading the plasma and, hence, on the relative signals afforded by the tin compounds in ICP–based techniques. Thus, when working with a pneumatic concentric nebulizer, the use of spray chambers affording high solvent transport efficiency to the plasma (such as cyclonic and single pass) or high spray chamber temperatures is recommended to minimize the influence of the tin chemical compound. Nevertheless, even when using the conventional pneumatic nebulizer coupled to the best spray chamber design (i.e., a single pass spray chamber), signals obtained for di-tert-butyltin/monobutyltin and dibutyltin are still around 10% and 30% lower than the corresponding signal for tin tetrachloride, respectively. When operating with a pneumatic microconcentric nebulizer coupled to a 50 °C-thermostated cinnabar spray chamber, all studied organotin compounds provided similar emission signals although about 60% lower than those obtained for tin tetrachloride. The use of an ultrasonic nebulizer coupled to a desolvation device provides the largest differences in the emission signals, among all tested systems.
Resumo:
When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect — the formation of a correlated, many body singlet state — and a resulting renormalization of the density of states near the Fermi energy. However, even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other phenomena. In addition to the well known renormalization of the g factor and the finite spin decoherence and relaxation times, Kondo exchange has recently been found to give rise to a newly discovered effect: the renormalization of the single ion magnetic anisotropy. Here we put these apparently different phenomena on equal footing by treating the effect of Kondo exchange perturbatively. In this formalism, the central quantity is ρJ, the product of the density of states at the Fermi energy ρ and the Kondo exchange constant J. We show that perturbation theory correctly describes the experimentally observed exchange induced shifts of the single spin excitation energies, demonstrating that Kondo exchange can be used to tune the effective magnetic anisotropy of a single spin.
Resumo:
Quantum-confined systems are one of the most promising ways to enable us to control a material's interactions with light. Nanorods in particular offer the right dimensions for exploring and manipulating the terahertz region of the spectrum. In this thesis, we model excitons confined inside a nanorod using the envelope function approximation. A region-matching transfer matrix method allows us to simulate excitonic states inside arbitrary heterostructures grown along the length of the rod. We apply the method to colloidal CdSe rods 70 nm in length and under 10 nm in diameter, capped with ligands of DDPA and pyridine. We extend past studies on these types of rods by taking into account their dielectric permittivity mismatch. Compared to previous calculations and experimentally measured terahertz absorption, we predict a higher energy main 1S$z$ to 2P$z$ transition peak. This indicates that the rods are likely larger in diameter than previously thought. We also investigate a nanorod with GaAs/Al$_{0.3}$Ga$_{0.7}$As coupled double dots. The excitonic transitions were found to be manipulable by varying the strength of an applied electric field. We employ quasi-static state population distributions to simulate the effects of exciton relaxation from optically active states to dim ground states. A critical value of the applied field, corresponding to the exciton binding energy of ~18 meV, was found to dramatically alter the terahertz absorption due to state mixing. Above this critical field, more nuanced shifts in transition energies were observed, and gain from radiative relaxation to the ground state is predicted.
Resumo:
Includes index.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We propose a model for non-ideal monitoring of the state of a coupled quantum dot qubit by a quantum tunnelling device. The non-ideality is modelled using an equivalent measurement circuit. This allows realistically available measurement results to be related to the state of the quantum system (qubit). We present a quantum trajectory that describes the stochastic evolution of the qubit state conditioned by tunnelling events (i.e. current) through the device. We calculate and compare the noise power spectra of the current in an ideal and a non-ideal measurement. The results show that when the two qubit dots are strongly coupled the non-ideal measurement cannot detect the qubit state precisely. The limitation of the ideal model for describing a realistic system maybe estimated from the noise spectra.
Resumo:
We consider the effect of quantum interference on population distribution and photon statistics of a cavity field interacting with dressed states of a strongly driven three-level atom. We analyse three coupling configurations of the cavity field to the driven atom, with the cavity frequency tuned to the outer Rabi sideband, the inner Rabi sideband and the central frequency of the 'singly dressed' three-level atom. The quantum doubly dressed states for each configuration are identified and the population distribution and photon statistics are interpreted in terms of transitions among these dressed states and their populations. We find that the population distribution depends strongly on quantum interference and the cavity damping. For the cavity field tuned to the outer or inner Rabi sidebands the cavity damping induces transitions between the dressed states which are forbidden for the ordinary spontaneous emission. Moreover, we find that in the case of the cavity field coupled to the inner Rabi sideband the population distribution is almost Poissonian with a large average number of photons that can be controlled by quantum interference. This system can be considered as a one-atom dressed-state laser with controlled intensity.
Resumo:
Density functional theory calculations were used to investigate the mechanisms of NO-carbon and N2O-carbon reactions. It was the first time that the importance of surface nitrogen groups was addressed in the kinetic behaviors of the NO-carbon reaction. It was found that the off-plane nitrogen groups that are adjacent to the zigzag edge sites and in-plane nitrogen groups that are located on the armchair sites make the bond energy of oxygen desorption even ca. 20% lower than that of the off-plane epoxy group adjacent to zigzag edge sites and in-plane o-quinone oxygen atoms on armchair sites; this may explain the reason why the experimentally obtained activation energy of the NO-carbon reaction is ca. 20% lower than that of the O-2-carbon reaction over 923 K. A higher ratio of oxygen atoms can be formed in the N2O-carbon reaction, because of the lower dissociation energy of N2O, which results in a higher ratio of off-plane epoxy oxygen atoms. The desorption energy of semiquinone with double adjacent off-plane oxygen groups is ca. 20% less than that of semiquinone with only one adjacent off-plane oxygen group. This may be the reason why the activation energy of N2O is also ca. 20% less than that of the O-2-carbon reaction. The new mechanism can also provide a good qualitative comparison for the relative reaction rates of NO-, N2O-, and O-2-carbon reactions. The anisotropic characters of these gas-carbon reactions can also be well explained.