910 resultados para content distribution networks
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Há no senso comum a visão que disponibilidade de energia está associada à crescimento econômico, ou mesmo, com desenvolvimento local/regional. A questão a ser abordada neste artigo é a relação entre a expansão das redes de distribuição de energia elétrica e das demais redes logísticas com o desenvolvimento regional. Particularmente, relacionamos mudanças no tamanho das cidades e a evolução da estrutura de consumo de energia, tomadas como os principais indicadores dessa relação, de modo a entrever algumas tendências de reestruturação sócio-espacial no Sudeste do Pará. O resultado, porém, foi que, não obstante a expansão da rede de distribuição de energia elétrica, o problema da desigualdade permanece. Concluímos ainda que o desenvolvimento regional depende do grau de cobertura do território pelas redes logísticas, sem garantia, contudo, de que a emergência destas redes sejam acompanhadas por efeitos de descentralização e (re)estruturação das atividades econômica no Sudeste do Pará, em específico, e na Amazônia oriental, em geral.
Resumo:
A localização de bancos de capacitores nas redes de distribuição de energia elétrica, corretamente dimensionados, busca compensar eventuais excessos de circulação de potência reativa pelas linhas, o que implica a redução de custos operacionais pela redução das perdas de energia e um aumento da capacidade de transmissão de potência ativa assegurando os níveis estabelecidos de tensão e fator de potência simultaneamente. A proliferação das cargas não lineares provocou uma mudança nos cenários de estudo dos sistemas elétricos de potência devido aos efeitos nocivos que os harmônicos gerados por elas ocasionam sobre a qualidade da energia elétrica. Considerando este novo cenário, esta tese tem como objetivo geral desenvolver uma ferramenta computacional utilizando técnicas de inteligência computacional apoiada em algoritmos genéticos (AG), para a otimização multiobjetivo da compensação da potência reativa em redes elétricas de distribuição capaz de localizar e dimensionar de forma ótima as unidades de compensação necessárias para obter os melhores benefícios econômicos e a manutenção dos índices de qualidade da energia estabelecidos pelas normas brasileiras. Como Inovação Tecnológica do trabalho a ferramenta computacional desenvolvida permite otimizar a compensação da potência reativa para melhorar do fator de potência em redes de distribuição contaminadas com harmônicos que, diferentemente de métodos anteriores, não só emprega bancos de capacitores, mas também filtros de harmônicos com esse objetivo. Utiliza-se o algoritmo NSGA-II, que determina as soluções ótimas de Pareto para o problema e permite ao especialista determinar as soluções mais efetivas. A proposta para a solução do problema apresenta várias inovações podendo-se destacar que a solução obtida permite determinar a compensação de potência reativa com capacitores em sistemas com certa penetração harmônica, atendendo a normas de qualidade de energia pertinentes, com relação aos níveis de distorção harmônica tolerados.
Resumo:
Pós-graduação em Televisão Digital: Informação e Conhecimento - FAAC
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The expansion and maintenance of electricity distribution networks generates large amounts of waste, much of it in the form of discarded insulators that are not reused or recycled. This paper describes the results of tests on used and new ceramic and polymeric insulators to verify if their exposure to weathering justifies their replacement. In new and used ceramic insulators, properties such as contact angle, relative density, porosimetry, dilatometry and X-ray diffraction patterns showed no differences or the differences that were found could not be related to their use. The discarded ceramic material showed high thermal stability, an interesting characteristic for application as chamotte. It can also be reused to replace gravel used in substations. In polymeric insulators, thermogravimetry, differential scanning calorimetry and relative density test results suggest degradation of used material compared to new. This would justify their replacement and discard as waste, but they show little recycling potential.
Resumo:
Distribution networks are formed by long lines that carry electricity substations to homes and industries. These lines have associated impedance and depending on operating conditions of the network these impedances may vary. This paper provides a detailed analysis of the effects observed in studies of voltage drop, short circuit and electrical losses, when considered the drivers sequence impedances used in primary distribution network at different temperatures. Therefore, it is initially presented a calculation methodology and details the factors that influence the final values. The methodology presented tackles in a practical way the main factors that directly or indirectly influence the values of the impedances as an emblematic example and will be properly dealt with throughout the paper is the effect of temperature on the values of the sequence impedances. More specifically is dealt with the case of XLPE cables protected, by having a higher maximum operating temperature than the operating temperature of the network. The effects observed in the power flow generated when considering the impedance values at both temperatures were analyzed. The impedance drivers tend to increase with increasing temperature. Thus the impedance of the conductor XLPE protected will tend to be greater for the maximum operating temperature for which the operating temperature of the network, resulting in greater voltage drop and higher electrical losses
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The objective of this work is to conduct a comparative study between the fuse key and the single-phase seccionalizador, which are protective equipment used in an electricity distribution networks. This study has also the purpose to reduce the number of electrical power breakdown. Distribution networks are not free from faults, disturbances and failures, then the occurrence of adversities on the network, which may be transient or permanent faults, results in the interruption of electric power. Thus, there are protective systems of distribution networks, which aims to ensure that the electric system continues to function. The incidence of transient faults in the distribution network of this electricity company was used to generate immediate shutdown of customers due to the bad use of fuses as protective equipment by the reclosers. With the use of the fuse switch in the distribution network, there was the immediate shutdown of customers, however, using the single-phase seccionalizador as protective equipment by the reclosers, there are three attempts to restart the electricity power. As the attempts to restart the electricity power are able to eliminate a transient fault, not causing shutdown of any costumer, with the implementation of single-phase sectionalizers to replace the fuses, the number of company shutdowns due to transient faults was reduced by 47.6%
Resumo:
The objective of this work is to conduct a comparative study between the fuse key and the single-phase seccionalizador, which are protective equipment used in an electricity distribution networks. This study has also the purpose to reduce the number of electrical power breakdown. Distribution networks are not free from faults, disturbances and failures, then the occurrence of adversities on the network, which may be transient or permanent faults, results in the interruption of electric power. Thus, there are protective systems of distribution networks, which aims to ensure that the electric system continues to function. The incidence of transient faults in the distribution network of this electricity company was used to generate immediate shutdown of customers due to the bad use of fuses as protective equipment by the reclosers. With the use of the fuse switch in the distribution network, there was the immediate shutdown of customers, however, using the single-phase seccionalizador as protective equipment by the reclosers, there are three attempts to restart the electricity power. As the attempts to restart the electricity power are able to eliminate a transient fault, not causing shutdown of any costumer, with the implementation of single-phase sectionalizers to replace the fuses, the number of company shutdowns due to transient faults was reduced by 47.6%
Resumo:
Máster Universitario en Eficiencia Energética (SIANI)
Resumo:
Water distribution networks optimization is a challenging problem due to the dimension and the complexity of these systems. Since the last half of the twentieth century this field has been investigated by many authors. Recently, to overcome discrete nature of variables and non linearity of equations, the research has been focused on the development of heuristic algorithms. This algorithms do not require continuity and linearity of the problem functions because they are linked to an external hydraulic simulator that solve equations of mass continuity and of energy conservation of the network. In this work, a NSGA-II (Non-dominating Sorting Genetic Algorithm) has been used. This is a heuristic multi-objective genetic algorithm based on the analogy of evolution in nature. Starting from an initial random set of solutions, called population, it evolves them towards a front of solutions that minimize, separately and contemporaneously, all the objectives. This can be very useful in practical problems where multiple and discordant goals are common. Usually, one of the main drawback of these algorithms is related to time consuming: being a stochastic research, a lot of solutions must be analized before good ones are found. Results of this thesis about the classical optimal design problem shows that is possible to improve results modifying the mathematical definition of objective functions and the survival criterion, inserting good solutions created by a Cellular Automata and using rules created by classifier algorithm (C4.5). This part has been tested using the version of NSGA-II supplied by Centre for Water Systems (University of Exeter, UK) in MATLAB® environment. Even if orientating the research can constrain the algorithm with the risk of not finding the optimal set of solutions, it can greatly improve the results. Subsequently, thanks to CINECA help, a version of NSGA-II has been implemented in C language and parallelized: results about the global parallelization show the speed up, while results about the island parallelization show that communication among islands can improve the optimization. Finally, some tests about the optimization of pump scheduling have been carried out. In this case, good results are found for a small network, while the solutions of a big problem are affected by the lack of constraints on the number of pump switches. Possible future research is about the insertion of further constraints and the evolution guide. In the end, the optimization of water distribution systems is still far from a definitive solution, but the improvement in this field can be very useful in reducing the solutions cost of practical problems, where the high number of variables makes their management very difficult from human point of view.