907 resultados para computationally efficient algorithm
Resumo:
PURPOSE: Most RB1 mutations are unique and distributed throughout the RB1 gene. Their detection can be time-consuming and the yield especially low in cases of conservatively-treated sporadic unilateral retinoblastoma (Rb) patients. In order to identify patients with true risk of developing Rb, and to reduce the number of unnecessary examinations under anesthesia in all other cases, we developed a universal sensitive, efficient and cost-effective strategy based on intragenic haplotype analysis. METHODS: This algorithm allows the calculation of the a posteriori risk of developing Rb and takes into account (a) RB1 loss of heterozygosity in tumors, (b) preferential paternal origin of new germline mutations, (c) a priori risk derived from empirical data by Vogel, and (d) disease penetrance of 90% in most cases. We report the occurrence of Rb in first degree relatives of patients with sporadic Rb who visited the Jules Gonin Eye Hospital, Lausanne, Switzerland, from January 1994 to December 2006 compared to expected new cases of Rb using our algorithm. RESULTS: A total of 134 families with sporadic Rb were enrolled; testing was performed in 570 individuals and 99 patients younger than 4 years old were identified. We observed one new case of Rb. Using our algorithm, the cumulated total a posteriori risk of recurrence was 1.77. CONCLUSIONS: This is the first time that linkage analysis has been validated to monitor the risk of recurrence in sporadic Rb. This should be a useful tool in genetic counseling, especially when direct RB1 screening for mutations leaves a negative result or is unavailable.
Resumo:
In this paper, we are proposing a methodology to determine the most efficient and least costly way of crew pairing optimization. We are developing a methodology based on algorithm optimization on Eclipse opensource IDE using the Java programming language to solve the crew scheduling problems.
Resumo:
A systolic array to implement lattice-reduction-aided lineardetection is proposed for a MIMO receiver. The lattice reductionalgorithm and the ensuing linear detections are operated in the same array, which can be hardware-efficient. All-swap lattice reduction algorithm (ASLR) is considered for the systolic design.ASLR is a variant of the LLL algorithm, which processes all lattice basis vectors within one iteration. Lattice-reduction-aided linear detection based on ASLR and LLL algorithms have very similarbit-error-rate performance, while ASLR is more time efficient inthe systolic array, especially for systems with a large number ofantennas.
Resumo:
Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.
Resumo:
The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.
Resumo:
BACKGROUND: Surveillance of multiple congenital anomalies is considered to be more sensitive for the detection of new teratogens than surveillance of all or isolated congenital anomalies. Current literature proposes the manual review of all cases for classification into isolated or multiple congenital anomalies. METHODS: Multiple anomalies were defined as two or more major congenital anomalies, excluding sequences and syndromes. A computer algorithm for classification of major congenital anomaly cases in the EUROCAT database according to International Classification of Diseases (ICD)v10 codes was programmed, further developed, and implemented for 1 year's data (2004) from 25 registries. The group of cases classified with potential multiple congenital anomalies were manually reviewed by three geneticists to reach a final agreement of classification as "multiple congenital anomaly" cases. RESULTS: A total of 17,733 cases with major congenital anomalies were reported giving an overall prevalence of major congenital anomalies at 2.17%. The computer algorithm classified 10.5% of all cases as "potentially multiple congenital anomalies". After manual review of these cases, 7% were agreed to have true multiple congenital anomalies. Furthermore, the algorithm classified 15% of all cases as having chromosomal anomalies, 2% as monogenic syndromes, and 76% as isolated congenital anomalies. The proportion of multiple anomalies varies by congenital anomaly subgroup with up to 35% of cases with bilateral renal agenesis. CONCLUSIONS: The implementation of the EUROCAT computer algorithm is a feasible, efficient, and transparent way to improve classification of congenital anomalies for surveillance and research.
Resumo:
Acoustic waveform inversions are an increasingly popular tool for extracting subsurface information from seismic data. They are computationally much more efficient than elastic inversions. Naturally, an inherent disadvantage is that any elastic effects present in the recorded data are ignored in acoustic inversions. We investigate the extent to which elastic effects influence seismic crosshole data. Our numerical modeling studies reveal that in the presence of high contrast interfaces, at which P-to-S conversions occur, elastic effects can dominate the seismic sections, even for experiments involving pressure sources and pressure receivers. Comparisons of waveform inversion results using a purely acoustic algorithm on synthetic data that is either acoustic or elastic, show that subsurface models comprising small low-to-medium contrast (?30%) structures can be successfully resolved in the acoustic approximation. However, in the presence of extended high-contrast anomalous bodies, P-to-S-conversions may substantially degrade the quality of the tomographic images. In particular, extended low-velocity zones are difficult to image. Likewise, relatively small low-velocity features are unresolved, even when advanced a priori information is included. One option for mitigating elastic effects is data windowing, which suppresses later arriving seismic arrivals, such as shear waves. Our tests of this approach found it to be inappropriate because elastic effects are also included in earlier arriving wavetrains. Furthermore, data windowing removes later arriving P-wave phases that may provide critical constraints on the tomograms. Finally, we investigated the extent to which acoustic inversions of elastic data are useful for time-lapse analyses of high contrast engineered structures, for which accurate reconstruction of the subsurface structure is not as critical as imaging differential changes between sequential experiments. Based on a realistic scenario for monitoring a radioactive waste repository, we demonstrated that acoustic inversions of elastic data yield substantial distortions of the tomograms and also unreliable information on trends in the velocity changes.
Resumo:
Many audio watermarking schemes divide the audio signal into several blocks such that part of the watermark is embedded into each of them. One of the key issues in these block-oriented watermarking schemes is to preserve the synchronisation, i.e. to recover the exact position of each block in the mark recovery process. In this paper, a novel time domain synchronisation technique is presented together with a new blind watermarking scheme which works in the Discrete Fourier Transform (DFT or FFT) domain. The combined scheme provides excellent imperceptibility results whilst achieving robustness against typical attacks. Furthermore, the execution of the scheme is fast enough to be used in real-time applications. The excellent transparency of the embedding algorithm makes it particularly useful for professional applications, such as the embedding of monitoring information in broadcast signals. The scheme is also compared with some recent results of the literature.
Resumo:
The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.
Resumo:
We present a new branch and bound algorithm for weighted Max-SAT, called Lazy which incorporates original data structures and inference rules, as well as a lower bound of better quality. We provide experimental evidence that our solver is very competitive and outperforms some of the best performing Max-SAT and weighted Max-SAT solvers on a wide range of instances.
Resumo:
Robotic platforms have advanced greatly in terms of their remote sensing capabilities, including obtaining optical information using cameras. Alongside these advances, visual mapping has become a very active research area, which facilitates the mapping of areas inaccessible to humans. This requires the efficient processing of data to increase the final mosaic quality and computational efficiency. In this paper, we propose an efficient image mosaicing algorithm for large area visual mapping in underwater environments using multiple underwater robots. Our method identifies overlapping image pairs in the trajectories carried out by the different robots during the topology estimation process, being this a cornerstone for efficiently mapping large areas of the seafloor. We present comparative results based on challenging real underwater datasets, which simulated multi-robot mapping
Resumo:
The identifiability of the parameters of a heat exchanger model without phase change was studied in this Master’s thesis using synthetically made data. A fast, two-step Markov chain Monte Carlo method (MCMC) was tested with a couple of case studies and a heat exchanger model. The two-step MCMC-method worked well and decreased the computation time compared to the traditional MCMC-method. The effect of measurement accuracy of certain control variables to the identifiability of parameters was also studied. The accuracy used did not seem to have a remarkable effect to the identifiability of parameters. The use of the posterior distribution of parameters in different heat exchanger geometries was studied. It would be computationally most efficient to use the same posterior distribution among different geometries in the optimisation of heat exchanger networks. According to the results, this was possible in the case when the frontal surface areas were the same among different geometries. In the other cases the same posterior distribution can be used for optimisation too, but that will give a wider predictive distribution as a result. For condensing surface heat exchangers the numerical stability of the simulation model was studied. As a result, a stable algorithm was developed.
Resumo:
This thesis studies the use of heuristic algorithms in a number of combinatorial problems that occur in various resource constrained environments. Such problems occur, for example, in manufacturing, where a restricted number of resources (tools, machines, feeder slots) are needed to perform some operations. Many of these problems turn out to be computationally intractable, and heuristic algorithms are used to provide efficient, yet sub-optimal solutions. The main goal of the present study is to build upon existing methods to create new heuristics that provide improved solutions for some of these problems. All of these problems occur in practice, and one of the motivations of our study was the request for improvements from industrial sources. We approach three different resource constrained problems. The first is the tool switching and loading problem, and occurs especially in the assembly of printed circuit boards. This problem has to be solved when an efficient, yet small primary storage is used to access resources (tools) from a less efficient (but unlimited) secondary storage area. We study various forms of the problem and provide improved heuristics for its solution. Second, the nozzle assignment problem is concerned with selecting a suitable set of vacuum nozzles for the arms of a robotic assembly machine. It turns out that this is a specialized formulation of the MINMAX resource allocation formulation of the apportionment problem and it can be solved efficiently and optimally. We construct an exact algorithm specialized for the nozzle selection and provide a proof of its optimality. Third, the problem of feeder assignment and component tape construction occurs when electronic components are inserted and certain component types cause tape movement delays that can significantly impact the efficiency of printed circuit board assembly. Here, careful selection of component slots in the feeder improves the tape movement speed. We provide a formal proof that this problem is of the same complexity as the turnpike problem (a well studied geometric optimization problem), and provide a heuristic algorithm for this problem.
Resumo:
Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.
Resumo:
This work presents synopsis of efficient strategies used in power managements for achieving the most economical power and energy consumption in multicore systems, FPGA and NoC Platforms. In this work, a practical approach was taken, in an effort to validate the significance of the proposed Adaptive Power Management Algorithm (APMA), proposed for system developed, for this thesis project. This system comprise arithmetic and logic unit, up and down counters, adder, state machine and multiplexer. The essence of carrying this project firstly, is to develop a system that will be used for this power management project. Secondly, to perform area and power synopsis of the system on these various scalable technology platforms, UMC 90nm nanotechnology 1.2v, UMC 90nm nanotechnology 1.32v and UMC 0.18 μmNanotechnology 1.80v, in order to examine the difference in area and power consumption of the system on the platforms. Thirdly, to explore various strategies that can be used to reducing system’s power consumption and to propose an adaptive power management algorithm that can be used to reduce the power consumption of the system. The strategies introduced in this work comprise Dynamic Voltage Frequency Scaling (DVFS) and task parallelism. After the system development, it was run on FPGA board, basically NoC Platforms and on these various technology platforms UMC 90nm nanotechnology1.2v, UMC 90nm nanotechnology 1.32v and UMC180 nm nanotechnology 1.80v, the system synthesis was successfully accomplished, the simulated result analysis shows that the system meets all functional requirements, the power consumption and the area utilization were recorded and analyzed in chapter 7 of this work. This work extensively reviewed various strategies for managing power consumption which were quantitative research works by many researchers and companies, it's a mixture of study analysis and experimented lab works, it condensed and presents the whole basic concepts of power management strategy from quality technical papers.