907 resultados para colonic drug delivery


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Topical corticosteroids, e.g., dexamethasone acetate (DMA), are extensively used to treat cutaneous inflammatory disorders even though their use is correlated with potential local and systemic side effects. The objective of this study was to develop and test the topical delivery of DMA-loaded surfactant based systems in vitro; these studies could guarantee a suitable delivery and therapeutic efficacy, as well as minimize DMA's side effects. A phase diagram was constructed using polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol as the surfactant (S), isopropyl myristate as the oil phase (O) and water (W). The systems were characterized using polarization light microscopy (PLM), as well as rheological and small angle X-ray scattering (SAXS) measurements. Depending on the concentration of the constituents, it was possible to obtain microemulsions (MEs) and liquid crystalline mesophases (lamellar and hexagonal). These types of arrangement were verified using PLM measurements. The SAXS results revealed that increasing the W/S ratio led to ME, as well as lamellar (LAM) and hexagonal (HEX) arrangements. The MEs displayed typical Newtonian behavior while the LAM and HEX phases exhibited pseudoplasticity and plasticity, respectively. The MEs displayed excellent drug solubilization that was approximately 10-fold higher than was observed with the individual components. The in vitro cutaneous permeation studies using pig ear skin and analysis of the mechanical parameters (hardness, compressibility, cohesiveness and adhesiveness) were carried out with a HEX phase and O/W emulsion. The HEX phase achieved better drug permeation and retention in the skin while its mechanical properties were suitable for skin administration. PPG-5-CETETH-20-based systems may be a promising platform delivering DMA and other topical corticosteroids through the skin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Topical photodynamic therapy (PDT) has been applied to almost all types of nonmelanoma skin cancer and numerous superficial benign skin disorders. Strategies to improve the accumulation of photosensitizer in the skin have been studied in recent years. Although the hydrophilic phthalocyanine zinc compound, zinc phthalocyanine tetrasulfonate (ZnPcSO4) has shown high photodynamic efficiency and reduced phototoxic side effects in the treatment of brain tumors and eye conditions, its use in topical skin treatment is currently limited by its poor skin penetration. In this study, nanodispersions of monoolein (MO)-based liquid crystalline phases were studied for their ability to increase ZnPcSO4 uptake by the skin. Lamellar, hexagonal and cubic crystalline phases were prepared and identified by polarizing light microscopy, and the nanodispersions were analyzed by dynamic light scattering. In vitro skin penetration studies were performed using a Franz's cell apparatus, and the skin uptake was evaluated in vivo in hairless mice. Aqueous dispersions of cubic and hexagonal phases showed particles of nanometer size, approximately 224 +/- 10 nm and 188 +/- 10 nm, respectively. In vitro skin retention experiments revealed higher fluorescence from the ZnPcSO4 in deeper skin layers when this photosensitizer was loaded in the hexagonal nanodispersion system when compared to both the cubic phase nanoparticles and the bulk crystalline phases (lamellar, cubic and hexagonal). The hexagonal nanodispersion showed a similar penetration behavior in animal tests. These results are important findings, suggesting the development of MO liquid crystal nanodispersions as potential delivery systems to enhance the efficacy of topical PDT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss) or (ds) double stranded molecules. The affinities of the protein for ss-vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of,3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells. Citation: Chen P-C, Hayashi MAF, Oliveira EB, Karpel RL (2012) DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 7(11): e48913. doi:10.1371/journal.pone.0048913

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to prepare and characterize coated pellets for controlled drug delivery. The influence of chitosan (CS) in pellets was evaluated by swelling, in vitro drug release and intestinal permeation assays. Pellets were coated with an enteric polymer, Kollicoat (R) MAE 30 DP, in a fluidized-bed apparatus and the coating formulations were based on a factorial design. Metronidazole (MT) released from coated and uncoated pellets were assessed by dissolution method using Apparatus I. Intestinal permeation was evaluated by everted intestinal sac model in rats, used to study the absorption of MT from coated pellets containing CS or not through the intestinal tissue. Although the film coating avoided drug dissolution in gastric medium, the overall drug release and intestinal permeation were dependent on the presence of CS. Thus, pellets containing CS show potential as a system for controlled drug delivery. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, interactions of folic acid with tea and tea components at the level of intestinal absorption have been investigated. Firstly, the interaction between folic acid and tea as well as tea catechins was studied in vitro, using Caco-2 cell monolayers and secondly, a clinical trial was designed and carried out. In addition, targeting of folic acid conjugated nanoparticles to FR expressing Caco-2 cells was studied in order to evaluate the principle of nutrient-receptor-coupled transport for drug targeting. In the first part of this work, it was shown that EGCG and ECG (gallated catechins) inhibit folic acid uptake (IC50 of 34.8 and 30.8 µmol/L) comparable to MTX (methotrexate) under these experimental conditions. Moreover, commercial green and black tea extracts inhibited folic acid uptake with IC50 values of approximately 7.5 and 3.6 mg/mL, respectively. These results clearly indicate an interaction between folic acid and green tea catechins at the level of intestinal uptake. The mechanism responsible for the inhibition process might be the inhibition of the influx transport routes for folates such as via RFC and/or PCFT. For understanding the in vivo relevance of this in vitro interaction, a phase one, open-labeled, randomized, cross-over clinical study in seven healthy volunteers was designed. For the 0.4 mg folic acid dose, the mean Cmax decreased by 39.2% and 38.6% and the mean AUC0 decreased by 26.6% and 17.9% by green tea and black tea, respectively. For the 5 mg folic acid dose, the mean Cmax decreased by 27.4% and mean AUC0 decreased by 39.9% when taken with green tea. The results of the clinical study confirm the interaction between tea and folic acid in vivo leading to lower bioavailabilities of folic acid. In the second part of the thesis, targeting studies using folic acid conjugated nanoparticles were conducted. Folic acid conjugated nanoparticles were shown to be internalized by the cell via FR (folate receptor) mediated endocytosis. DNA block copolymer micelles equipped with 2, 11 and 28 folic acid units respectively were applied on FR expressing Caco-2 cells. There was a direct proportion in the amount of internalized nanoparticle and the number of folic acid units on the periphery of the nanoparticle. To sum up, throughout this thesis, the importance of folic acid for nutrition and nutrient and drug related interactions of folic acid at intestinal level was shown. Furthermore, significance of FRs in targeting for cancer chemotherapy was demonstrated in in vitro cell culture experiments. Folic acid conjugated DNA block copolymer micelles were suggested as efficient nanoparticles for targeted drug delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Drug-induced respiratory depression is a common side effect of the agents used in anesthesia practice to provide analgesia and sedation. Depression of the ventilatory drive in the spontaneously breathing patient can lead to severe cardiorespiratory events and it is considered a primary cause of morbidity. Reliable predictions of respiratory inhibition in the clinical setting would therefore provide a valuable means to improve the safety of drug delivery. Although multiple studies investigated the regulation of breathing in man both in the presence and absence of ventilatory depressant drugs, a unified description of respiratory pharmacodynamics is not available. This study proposes a mathematical model of human metabolism and cardiorespiratory regulation integrating several isolated physiological and pharmacological aspects of acute drug-induced ventilatory depression into a single theoretical framework. The description of respiratory regulation has a parsimonious yet comprehensive structure with substantial predictive capability. Simulations relative to the synergistic interaction of the hypercarbic and hypoxic respiratory drive and the global effect of drugs on the control of breathing are in good agreement with published experimental data. Besides providing clinically relevant predictions of respiratory depression, the model can also serve as a test bed to investigate issues of drug tolerability and dose finding/control under non-steady-state conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability of anesthetic agents to provide adequate analgesia and sedation is limited by the ventilatory depression associated with overdosing in spontaneously breathing patients. Therefore, quantitation of drug induced ventilatory depression is a pharmacokinetic-pharmacodynamic problem relevant to the practice of anesthesia. Although several studies describe the effect of respiratory depressant drugs on isolated endpoints, an integrated description of drug induced respiratory depression with parameters identifiable from clinically available data is not available. This study proposes a physiological model of CO2 disposition, ventilatory regulation, and the effects of anesthetic agents on the control of breathing. The predictive performance of the model is evaluated through simulations aimed at reproducing experimental observations of drug induced hypercarbia and hypoventilation associated with intravenous administration of a fast-onset, highly potent anesthetic mu agonist (including previously unpublished experimental data determined after administration of 1 mg alfentanil bolus). The proposed model structure has substantial descriptive capability and can provide clinically relevant predictions of respiratory inhibition in the non-steady-state to enhance safety of drug delivery in the anesthetic practice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OX7 monoclonal antibody F((ab')2) fragments directed against Thy1.1 antigen can be used for drug targeting by coupling to the surface of drug-loaded liposomes. Such OX7-conjugated immunoliposomes (OX7-IL) were used recently for drug delivery to rat glomerular mesangial cells, which are characterized by a high level of Thy1.1 antigen expression. In the present study, the relationship between OX7-IL tissue distribution and target Thy1.1 antigen localization in different organs in rat was investigated. Western blot and immunohistofluorescence analysis revealed a very high Thy1.1 expression in brain cortex and striatum, thymus and renal glomeruli. Moderate Thy1.1 levels were observed in the collecting ducts of kidney, lung tissue and spleen. Thy1.1 was not detected in liver and heart. There was a poor correlation between Thy1.1 expression levels and organ distribution of fluorescence- or (14)C-labeled OX7-IL. The highest overall organ density of OX7-IL was observed in the spleen, followed by lung, liver and kidney. Heart and brain remained negative. With respect to intra-organ distribution, a localized and distinct signal was observed in renal glomerular mesangial cells only. As a consequence, acute pharmacological (i.e. toxic) effects of doxorubicin-loaded OX7-IL were limited to renal glomeruli. The competition with unbound OX7 monoclonal antibody F((ab')2) fragments demonstrated that the observed tissue distribution and acute pharmacological effects of OX7-IL were mediated specifically by the conjugated OX7 antibody. It is concluded that both the high target antigen density and the absence of endothelial barriers are needed to allow for tissue-specific accumulation and pharmacological effects of OX7-IL. The liposomal drug delivery strategy used is therefore specific toward renal glomeruli and can be expected to reduce the risk of unwanted side effects in other tissues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bone marrow is a target organ site involved in multiple diseases including myeloproliferative disorders and hematologic malignancies and metastases from breast and prostate. Most of these diseases are characterized with poor quality of life, and the treatment options are only palliative due to lack of delivery mechanisms for systemically injected drugs which results in dose limitation to protect the healthy hematopoietic cells. Therefore, there is a critical need to develop effective therapeutic strategies that allow for selective delivery of therapeutic payload to the bone marrow. Nanotechnology-based drug delivery systems provide the opportunity to deliver drugs to the target tissue while decreasing exposure to normal tissues. E-selectin is constitutively expressed on the bone marrow vasculature, but almost absent in normal vessels, and therefore, E-selectin targeted drug delivery presents an ideal strategy for the delivery of therapeutic nanoparticles to the bone marrow. The objective of this study was to develop a novel bone marrow targeted multistage vector (MSV) via E-selectin for delivery of therapeutics and imaging agents. To achieve this goal, Firstly, an E-selectin thioaptamer (ESTA) ligand was identified through a two-step screening from a combinatorial thioaptamer library. Next, ESTA-conjugated MSV (ESTA-MSV) were developed and evaluated for their stability and binding to E-selectin expressing endothelial cells. Different types of nanoparticles including liposomes, quantum dots, and iron oxide nanoparticles were loaded into the porous structure of ESTA-MSV. In vivo targeting experiments demonstrated 8-fold higher accumulation of ESTA-MSV in the mouse bone marrow as compared to non-targeted MSV Furthermore, intravenous injection of liposomes loaded ESTA-MSV resulted in a significantly higher accumulation of liposome in the bone marrow space as compared to injection of non-targeted MSV or liposomes alone. Overall this study provides first evidence that E-selectin targeted multistage vector preferentially targets to bone marrow vasculature and delivers larger amounts of nanoparticles. This delivery strategy holds potential for the selective delivery of large amounts of therapeutic payload to the vascular niches in the bone marrow for the treatment of bone marrow associated diseases.