935 resultados para cold spray
Resumo:
The problem of thermophoretic deposition of small particles onto cold surfaces is studied in two-dimensional and axisymmetric flow fields. The particle concentration equation is solved numerically together with the momentum and energy equations in the laminar boundary layer with variable density effect included. It is shown explicitly to what extent the particle concentration and deposition rate at the wall are influenced by the density variation effect for external flow past bodies. The general numerical procedure is given for two-dimensional and axisymmetric cases and is illustrated with examples of thermophoretic deposition of particles in flows past a cold cylinder and a sphere.
Resumo:
Some of the calculated parameters show a maximum value for specimens heat-treated at about 100°C. The tensile strength is, for instance, substantially higher for specimens shock-heated at 100°C than for non-heated ones. Another striking feature is the initial decrease of the diameter observed in specimens heat-treated at 600°C when loaded in uniaxial compression. Both optical microscopy and DSA experiments reveal a large increase in microcracking when the heat-treatment temperature exceeds 300°C.
Resumo:
Numerical simulation was conducted to characterize the kerosene spray injecting into supersonic cross flow, especially focusing on the aerodynamic secondary breakup effect of the supersonic cross flow on the initial droplets. It was revealed that the initial parent drops were broken up into small drops whose diameter is about O(10) micrometers soon after they entered into the supersonic cross flow. During the appropriate range of initial drop size, the parent droplets would be broken up into small drops with the same magnitude diameter no matter how large the initial drops SMD was.
Resumo:
Numerical simulation was conducted to study the kerosene spray characteristics injecting into supersonic cross flow. The verification of the simulation was carried out by experimental Schlieren image, and the agreement was obtained by compared the spray plume pictures. Furthermore, the aerodynamic secondary breakup effect of the supersonic cross flow on the initial droplets was investigated. It was revealed that the initial parent drops were broken up into small drops whose diameter is about O(10) micrometers soon after they entered into the supersonic cross flow. During the appropriate range of initial drop size, the parent droplets would be broken up into small drops with the same magnitude diameter no matter how large the initial drops SMD was.
Resumo:
Expendable bathythermograph data collected by the Ships of Opportunity (SOOP) - Ocean Monitoring Program are analyzed for seasonal and inter-annual variations of the cold pool. Two major SOOP transects within the Middle Atlantic Bight (Southern New England and New York) have been analyzed for the years common to both (1977-81). During the years 1977-81, over 200 transects were occupied, and almost 3,000 XBT's were dropped. Results show that the cold pool is formed with the onset of spring warming and persists until fall overturn, is consistent year to year in both area and weighted average annual temperature, and advects water from the northeast to the southwest. Results also show a 100-d lag in minimum temperature between the Southern New England and New York transects. DitTerences in bathymetry between the two transects and their influence on the cold pool are also discussed. Plots of average (1977-81) bottom temperature for both transects are discussed and show consistent annual weighted mean temperature and areas. Bottom temperature plots for individual years, as well as maximum and minimum bottom temperature plots, are presented as Appendix figures. (PDF file contains 28 pages.)
Resumo:
Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
Jacket platform is the most widely used offshore platform. Steel rubber vibration isolator and damping isolation system are often used to reduce or isolate the ice-induced and seismic-induced vibrations. The previous experimental and theoretical studies concern mostly with dynamic properties, vibration isolation schemes and vibration-reduction effectiveness analysis. In this paper, the experiments on steel rubber vibration isolator were carried out to investigate the compressive properties and fatigue properties in different low temperature conditions. The results may provide some guidelines for design of steel rubber vibration isolator for offshore platform in a cold environment, and for maintenance and replacement of steel rubber vibration isolator, and also for fatigue life assessment of the steel rubber vibration isolator. (C) 2009 Elsevier Ltd. All rights reserved.