973 resultados para coffee leaf scorch
Resumo:
ABSTRACT The number of days between anthesis and maturation of conilon coffee berries varies according to the genotype. Thus, it is believed that periods of greater nutrient demand for fruit formation also vary according to the genotype, directly influencing fertilizer management. The goal of this study was to establish accumulation curves for the micronutrients boron, copper, iron, manganese, and zinc in conilon coffee trees with different maturation cycles. The experiment was conducted in Nova Venécia, State of Espírito Santo, Brazil, during the reproductive cycle of the 2010/2011 crop year. Four coffee genotypes with different maturation cycles (early, intermediate, late, and super-late) were studied. A completely randomized experimental design was used with five replications. The treatments correspond to the accumulation of B, Cu, Fe, Mn, and Zn in the berries every 28 days in the period from flowering to harvest. The early, intermediate, and late genotypes accumulated Fe, Cu, and Mn in a similar manner, with sigmoid curves, whereas the super-late genotype accumulated these nutrients exponentially. Zn was accumulated by all four genotypes following a sigmoid curve. The early, intermediate, and late genotypes accumulated B linearly, whereas the super-late genotype accumulated B following a sigmoid curve. The maturation cycle of the genotype must be taken into account to apply the correct rate of micronutrient fertilization in coffee plantations.
Resumo:
To study the stress-induced effects caused by wounding under a new perspective, a metabolomic strategy based on HPLC-MS has been devised for the model plant Arabidopsis thaliana. To detect induced metabolites and precisely localise these compounds among the numerous constitutive metabolites, HPLC-MS analyses were performed in a two-step strategy. In a first step, rapid direct TOF-MS measurements of the crude leaf extract were performed with a ballistic gradient on a short LC-column. The HPLC-MS data were investigated by multivariate analysis as total mass spectra (TMS). Principal components analysis (PCA) and hierarchical cluster analysis (HCA) on principal coordinates were combined for data treatment. PCA and HCA demonstrated a clear clustering of plant specimens selecting the highest discriminating ions given by the complete data analysis, leading to the specific detection of discrete-induced ions (m/z values). Furthermore, pool constitution with plants of homogeneous behaviour was achieved for confirmatory analysis. In this second step, long high-resolution LC profilings on an UPLC-TOF-MS system were used on pooled samples. This allowed to precisely localise the putative biological marker induced by wounding and by specific extraction of accurate m/z values detected in the screening procedure with the TMS spectra.
Resumo:
Leaf litter inputs and retention play an important role in ecosystem functioning in forested streams. We examined colonization of leaves by microbes (bacteria, fungi, and protozoa) and fauna in Fuirosos, an intermittent forested Mediterranean stream. Black poplar (Populus nigra) and plane (Platanus acerifolia) leaf packs were placed in the stream for 4 mo. We measured the biomasses and calculated the densities of bacteria, fungi, protozoa, meiofauna, and macroinvertebrates to determine their dynamics and potential interactions throughout the colonization process. Colonization was strongly correlated with hydrological variability (defined mainly by water temperature and discharge). The 1st week of colonization was characterized by hydrological stability and warm water temperatures, and allocation of C from microbial to invertebrate compartments on the leaf packs was rapid. Clumps of fine particulate organic matter (FPOM) were retained by the leaf packs, and enhanced rapid colonization by microfauna and meiofaunal collector-gatherers (ostracods and copepods). After 2 wk, an autumnal flood caused a 20-fold increase in water flow. Higher discharge and lower water temperature caused FPOM-related fauna to drift away from the packs and modified the subsequent colonization sequence. Fungi showed the highest biomass, with similar values to those recorded at the beginning of the experiment. After 70 d of postflood colonization, fungi decreased to nearly 40% of the total C in the leaf packs, whereas invertebrates became more abundant and accounted for 60% of the C. Natural flood occurrence in Mediterranean streams could be a key factor in the colonization and processing of organic matter.
Resumo:
Presentem l'estudi taxonòmic dels représentants d'Euphorbia subsect. Esula a la Península Ibèrica. Prèviament, s'inclou un primer capítol dedicai a l'estudi de les epidermis foliars i un segon capítol sobre nombres cromosòmics...
Resumo:
The objective of this work was to evaluate the effect of coffee (Coffea arabica L.) population densities on the chemical and microbiological properties of an Oxisol. The work was carried out on soil samples of 0-20 cm depth originated from an experimental site which had been used for coffee tree spacing studies during 15 years, in Paraná State, Brazil. Eight coffee tree populations were evaluated: 7143, 3571, 2381, 1786, 1429, 1190, 1020, and 893 trees/ha. Increasing plant population increased soil pH, exchangeable Ca, Mg, K, extractable P, organic carbon, moisture content and coffee root colonization by vesicular arbuscular mycorrhizal fungi, and decreased exchangeable Al and microbial biomass. Such results were attributed to better erosion control, improved plant residue management and nutrient cycling, and decreased leaching losses. Increasing coffee tree population per unit of area has shown to be an important reclamation recuperation strategy for improving fertility of the acid soils in Paraná, Brazil.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.
Resumo:
Kudzu is a cover crop that has escaped cultivation in some subtropical and warm temperate regions. Kudzu has previously demonstrated broad intraspecific physiological plasticity while colonizing new environments. The objective of this paper was to investigate characteristics of kudzu leaflet anatomy that might contribute to its successful growth in climatically distinct environments, and to escape cultivation as well. Fresh and fixed leaflet strips of field-grown plants were analyzed. The lower epidermis of kudzu showed a higher frequency of stomata (147 ± 19 stomata mm-2) than the upper epidermis (26 ± 17 stomata mm-2). The average number of trichomes per square milimeter was 8 for both the upper and the lower epidermis. The average trichome length was 410 ± 200 mum for the upper epidermis and 460 ± 190 mum for the lower epidermis. Cuticle thickness was not considerably different between lower and upper epidermis. The leaflet blade consisted basically of two layers (upper and lower) of unicellular epidermis, two layers of palisade parenchyma and one layer of spongy parenchyma. One layer of paraveinal mesophyll was found between palisade and spongy parenchyma. In conclusion, leaflets of kudzu present anatomical characteristics that might contribute to the broad physiological plasticity shown by kudzu.
Resumo:
With the aim of studying the organogenesis in vitro in Passiflora edulis Sims f. flavicarpa Deg., the passionfruit, leaf-derived explants were cultured on media containing NAA or BAP and incubated either in continuous darkness or in light. The histological events leading to de novo organ formation were evaluated. Darkness induces rhizogenesis in the presence of NAA, whereas direct shoot regeneration is stimulated by light and BAP. This latter condition is recommended for passionfruit micropropagation as several adventitious shoot buds were formed from meristemoids of parenchymal origin.
Resumo:
BACKGROUND: Epidemiologic and experimental data have suggested that chlorogenic acid, which is a polyphenol contained in green coffee beans, prevents diet-induced hepatic steatosis and insulin resistance. OBJECTIVE: We assessed whether the consumption of chlorogenic acid-rich coffee attenuates the effects of short-term fructose overfeeding, dietary conditions known to increase intrahepatocellular lipids (IHCLs), and blood triglyceride concentrations and to decrease hepatic insulin sensitivity in healthy humans. DESIGN: Effects of 3 different coffees were assessed in 10 healthy volunteers in a randomized, controlled, crossover trial. IHCLs, hepatic glucose production (HGP) (by 6,6-d2 glucose dilution), and fasting lipid oxidation were measured after 14 d of consumption of caffeinated coffee high in chlorogenic acid (C-HCA), decaffeinated coffee high in chlorogenic acid, or decaffeinated coffee with regular amounts of chlorogenic acid (D-RCA); during the last 6 d of the study, the weight-maintenance diet of subjects was supplemented with 4 g fructose · kg(-1) · d(-1) (total energy intake ± SD: 143 ± 1% of weight-maintenance requirements). All participants were also studied without coffee supplementation, either with 4 g fructose · kg(-1) · d(-1) (high fructose only) or without high fructose (control). RESULTS: Compared with the control diet, the high-fructose diet significantly increased IHCLs by 102 ± 36% and HGP by 16 ± 3% and decreased fasting lipid oxidation by 100 ± 29% (all P < 0.05). All 3 coffees significantly decreased HGP. Fasting lipid oxidation increased with C-HCA and D-RCA (P < 0.05). None of the 3 coffees significantly altered IHCLs. CONCLUSIONS: Coffee consumption attenuates hepatic insulin resistance but not the increase of IHCLs induced by fructose overfeeding. This effect does not appear to be mediated by differences in the caffeine or chlorogenic acid content. This trial was registered at clinicaltrials.gov as NCT00827450.
Resumo:
Plants forming a rosette during their juvenile growth phase, such as Arabidopsis thaliana (L.) Heynh., are able to adjust the size, position and orientation of their leaves. These growth responses are under the control of the plants circadian clock and follow a characteristic diurnal rhythm. For instance, increased leaf elongation and hyponasty - defined here as the increase in leaf elevation angle - can be observed when plants are shaded. Shading can either be caused by a decrease in the fluence rate of photosynthetically active radiation (direct shade) or a decrease in the fluence rate of red compared with far-red radiation (neighbour detection). In this paper we report on a phenotyping approach based on laser scanning to measure the diurnal pattern of leaf hyponasty and increase in rosette size. In short days, leaves showed constitutively increased leaf elevation angles compared with long days, but the overall diurnal pattern and the magnitude of up and downward leaf movement was independent of daylength. Shade treatment led to elevated leaf angles during the first day of application, but did not affect the magnitude of up and downward leaf movement in the following day. Using our phenotyping device, individual plants can be non-invasively monitored during several days under different light conditions. Hence, it represents a proper tool to phenotype light- and circadian clock-mediated growth responses in order to better understand the underlying regulatory genetic network.
Resumo:
The objective of this study was to determine the effects of rainfall, temperature, sunlight and relative humidity, as well as predators and parasitoids, leaf chemical composition and levels of leaf nitrogen and potassium on the intensity of Scirtothrips manihoti (Thysanoptera: Thripidae) attack on cassava Manihot esculenta Crantz var. Cacau. The leaf compounds (E)-farnesene/trans-farnesol and D-friedoolean-14-en-3-one correlated significantly with the population of S. manihoti. Insect population decreased in the dry and cold season probably due to leaf senescence. Significative correlation was observed between Syrphidae with S. manihoti populations.
Resumo:
Photosynthetic activity of cereals has traditionally been studied using leaves, thus neglecting the role of other organs such as ears. Here, we studied the effects of water status and genotypes on the photosynthetic activity of the flag leaf blade and the ear of durum wheat. The various parameters related to the photosynthetic activity were analysed in relation to the total above-ground plant biomass and grain yield at maturity. Four local varieties plus two cultivars adapted to the semiarid areas of South Morocco were grown in pots in a greenhouse. Five different water treatments were maintained from the beginning of stem elongation to maturity, when shoot biomass and grain yield were recorded. The net photosynthesis (A), stomatal conductance (gs) and transpiration (T) of the ear and the flag leaf were measured at anthesis. In both organs these factors decreased significantly with water deficit, whereas the A/T and A/gs ratios increased. The genotype effect was also significant for all traits studied. Whole-organ photosynthesis was much higher in the ear than in the flag leaf in well-watered conditions. As water stress developed, photosynthesis decreased less in the ear than in the flag leaf. Whole-ear photosynthesis correlated better than flag leaf photosynthesis with biomass and yield. Nevertheless, the relationships of the whole flag leaf with biomass and yield improved as the water stress became more severe, suggesting a progressive shift of yield from sink to source limitation. For all water regimes the ratios A/gs and A/T of the ear also showed a higher (negative) correlation with both biomass and yield than those of the flag leaf. The results indicate that the ear has a greater photosynthetic role than the flag leaf in determining grain yield, not only in drought but also in the absence of stress.