447 resultados para classifiers
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Complex networks have been employed to model many real systems and as a modeling tool in a myriad of applications. In this paper, we use the framework of complex networks to the problem of supervised classification in the word disambiguation task, which consists in deriving a function from the supervised (or labeled) training data of ambiguous words. Traditional supervised data classification takes into account only topological or physical features of the input data. On the other hand, the human (animal) brain performs both low- and high-level orders of learning and it has facility to identify patterns according to the semantic meaning of the input data. In this paper, we apply a hybrid technique which encompasses both types of learning in the field of word sense disambiguation and show that the high-level order of learning can really improve the accuracy rate of the model. This evidence serves to demonstrate that the internal structures formed by the words do present patterns that, generally, cannot be correctly unveiled by only traditional techniques. Finally, we exhibit the behavior of the model for different weights of the low- and high-level classifiers by plotting decision boundaries. This study helps one to better understand the effectiveness of the model. Copyright (C) EPLA, 2012
Resumo:
This paper presents a survey of evolutionary algorithms that are designed for decision-tree induction. In this context, most of the paper focuses on approaches that evolve decision trees as an alternate heuristics to the traditional top-down divide-and-conquer approach. Additionally, we present some alternative methods that make use of evolutionary algorithms to improve particular components of decision-tree classifiers. The paper's original contributions are the following. First, it provides an up-to-date overview that is fully focused on evolutionary algorithms and decision trees and does not concentrate on any specific evolutionary approach. Second, it provides a taxonomy, which addresses works that evolve decision trees and works that design decision-tree components by the use of evolutionary algorithms. Finally, a number of references are provided that describe applications of evolutionary algorithms for decision-tree induction in different domains. At the end of this paper, we address some important issues and open questions that can be the subject of future research.
Resumo:
Background: Psychosis has various causes, including mania and schizophrenia. Since the differential diagnosis of psychosis is exclusively based on subjective assessments of oral interviews with patients, an objective quantification of the speech disturbances that characterize mania and schizophrenia is in order. In principle, such quantification could be achieved by the analysis of speech graphs. A graph represents a network with nodes connected by edges; in speech graphs, nodes correspond to words and edges correspond to semantic and grammatical relationships. Methodology/Principal Findings: To quantify speech differences related to psychosis, interviews with schizophrenics, manics and normal subjects were recorded and represented as graphs. Manics scored significantly higher than schizophrenics in ten graph measures. Psychopathological symptoms such as logorrhea, poor speech, and flight of thoughts were grasped by the analysis even when verbosity differences were discounted. Binary classifiers based on speech graph measures sorted schizophrenics from manics with up to 93.8% of sensitivity and 93.7% of specificity. In contrast, sorting based on the scores of two standard psychiatric scales (BPRS and PANSS) reached only 62.5% of sensitivity and specificity. Conclusions/Significance: The results demonstrate that alterations of the thought process manifested in the speech of psychotic patients can be objectively measured using graph-theoretical tools, developed to capture specific features of the normal and dysfunctional flow of thought, such as divergence and recurrence. The quantitative analysis of speech graphs is not redundant with standard psychometric scales but rather complementary, as it yields a very accurate sorting of schizophrenics and manics. Overall, the results point to automated psychiatric diagnosis based not on what is said, but on how it is said.
Resumo:
In this article we propose an efficient and accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the time domains reflectometry method for signal acquisition, which was further analyzed by OPF and several other well-known pattern recognition techniques. The results indicated that OPF and support vector machines outperformed artificial neural networks and a Bayesian classifier, but OPF was much more efficient than all classifiers for training, and the second fastest for classification.
Resumo:
Fraud is a global problem that has required more attention due to an accentuated expansion of modern technology and communication. When statistical techniques are used to detect fraud, whether a fraud detection model is accurate enough in order to provide correct classification of the case as a fraudulent or legitimate is a critical factor. In this context, the concept of bootstrap aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the adjusted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper, for the first time, we aim to present a pioneer study of the performance of the discrete and continuous k-dependence probabilistic networks within the context of bagging predictors classification. Via a large simulation study and various real datasets, we discovered that the probabilistic networks are a strong modeling option with high predictive capacity and with a high increment using the bagging procedure when compared to traditional techniques. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.
Resumo:
Abstract Background One goal of gene expression profiling is to identify signature genes that robustly distinguish different types or grades of tumors. Several tumor classifiers based on expression profiling have been proposed using microarray technique. Due to important differences in the probabilistic models of microarray and SAGE technologies, it is important to develop suitable techniques to select specific genes from SAGE measurements. Results A new framework to select specific genes that distinguish different biological states based on the analysis of SAGE data is proposed. The new framework applies the bolstered error for the identification of strong genes that separate the biological states in a feature space defined by the gene expression of a training set. Credibility intervals defined from a probabilistic model of SAGE measurements are used to identify the genes that distinguish the different states with more reliability among all gene groups selected by the strong genes method. A score taking into account the credibility and the bolstered error values in order to rank the groups of considered genes is proposed. Results obtained using SAGE data from gliomas are presented, thus corroborating the introduced methodology. Conclusion The model representing counting data, such as SAGE, provides additional statistical information that allows a more robust analysis. The additional statistical information provided by the probabilistic model is incorporated in the methodology described in the paper. The introduced method is suitable to identify signature genes that lead to a good separation of the biological states using SAGE and may be adapted for other counting methods such as Massive Parallel Signature Sequencing (MPSS) or the recent Sequencing-By-Synthesis (SBS) technique. Some of such genes identified by the proposed method may be useful to generate classifiers.
Resumo:
Este trabalho tem por objetivo investigar e delimitar formas de interação e disputas sociais presentes no movimento paralímpico brasileiro, relativos aos processos de classificação de atletas, com base em conceitos de Pierre Bourdieu. A metodologia utilizada fundamentou-se em entrevistas semiestruturadas com quatro atletas (com deficiência física ou visual, praticantes de diversas modalidades: natação, goalball, rugby e basquete em cadeira de rodas) e quatro dirigentes (2 atuantes em funções técnicas e 2 em funções administrativas do Comitê Paralímpico Brasileiro). A análise de dados apoiou-se no método Discurso do Sujeito Coletivo e suas ferramentas metodológicas (expressões-chave; ideias centrais; ancoragens; instrumentos de análise de discurso). Destacam-se como resultados: os protocolos de classificação, assim como a atuação e formação de novos classificadores, são motivo de tensões sociais neste espaço; Os classificadores exercem importante poder simbólico no subcampo; Demais agentes, como treinadores e atletas, têm suas possibilidades de ascensão diminuídas por condições sociais desfavoráveis..
Resumo:
[EN]Detecting people is a key capability for robots that operate in populated environments. In this paper, we have adopted a hierarchical approach that combines classifiers created using supervised learning in order to identify whether a person is in the view-scope of the robot or not. Our approach makes use of vision, depth and thermal sensors mounted on top of a mobile platform.
Resumo:
In the present study we are using multi variate analysis techniques to discriminate signal from background in the fully hadronic decay channel of ttbar events. We give a brief introduction to the role of the Top quark in the standard model and a general description of the CMS Experiment at LHC. We have used the CMS experiment computing and software infrastructure to generate and prepare the data samples used in this analysis. We tested the performance of three different classifiers applied to our data samples and used the selection obtained with the Multi Layer Perceptron classifier to give an estimation of the statistical and systematical uncertainty on the cross section measurement.
Resumo:
Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques.
Resumo:
Ontology design and population -core aspects of semantic technologies- re- cently have become fields of great interest due to the increasing need of domain-specific knowledge bases that can boost the use of Semantic Web. For building such knowledge resources, the state of the art tools for ontology design require a lot of human work. Producing meaningful schemas and populating them with domain-specific data is in fact a very difficult and time-consuming task. Even more if the task consists in modelling knowledge at a web scale. The primary aim of this work is to investigate a novel and flexible method- ology for automatically learning ontology from textual data, lightening the human workload required for conceptualizing domain-specific knowledge and populating an extracted schema with real data, speeding up the whole ontology production process. Here computational linguistics plays a fundamental role, from automati- cally identifying facts from natural language and extracting frame of relations among recognized entities, to producing linked data with which extending existing knowledge bases or creating new ones. In the state of the art, automatic ontology learning systems are mainly based on plain-pipelined linguistics classifiers performing tasks such as Named Entity recognition, Entity resolution, Taxonomy and Relation extraction [11]. These approaches present some weaknesses, specially in capturing struc- tures through which the meaning of complex concepts is expressed [24]. Humans, in fact, tend to organize knowledge in well-defined patterns, which include participant entities and meaningful relations linking entities with each other. In literature, these structures have been called Semantic Frames by Fill- 6 Introduction more [20], or more recently as Knowledge Patterns [23]. Some NLP studies has recently shown the possibility of performing more accurate deep parsing with the ability of logically understanding the structure of discourse [7]. In this work, some of these technologies have been investigated and em- ployed to produce accurate ontology schemas. The long-term goal is to collect large amounts of semantically structured information from the web of crowds, through an automated process, in order to identify and investigate the cognitive patterns used by human to organize their knowledge.
Resumo:
Wie viele andere Sprachen Ost- und Südostasiens ist das Thai eine numerusneutrale Sprache, in der ein Nomen lediglich das Konzept benennt und keinen Hinweis auf die Anzahl der Objekte liefert. Um Nomina im Thai zählen zu können, ist der Klassifikator (Klf) nötig, der die Objekte anhand ihrer semantischen Schlüsseleigenschaft herausgreift und individualisiert. Neben der Klassifikation stellt die Individualisierung die Hauptfunktion des Klf dar. Weitere Kernfunktionen des Klf außerhalb des Zählkontextes sind die Markierung der Definitheit, des Numerus sowie des Kontrasts. Die wichtigsten neuen Ergebnisse dieser Arbeit, die sowohl die Ebenen der Grammatik und Semantik als auch die der Logik und Pragmatik integriert, sind folgende: Im Thai kann der Klf sowohl auf der Element- als auch auf der Mengenebene agieren. In der Verbindung mit einem Demonstrativ kann der Klf auch eine pluralische Interpretation hervorrufen, wenn er auf eine als pluralisch präsupponierte Gesamtmenge referiert oder die Gesamtmenge in einer Teil-Ganzes-Relation individualisiert. In einem Ausdruck, der bereits eine explizite Zahlangabe enthält, bewirkt die Klf-Demonstrativ-Konstruktion eine Kontrastierung von Mengen mit gleichen Eigenschaften. Wie auch der Individualbegriff besitzt der Klf Intension und Extension. Intension und Extension von Thai-Klf verhalten sich umgekehrt proportional, d.h. je spezifischer der Inhalt eines Klf ist, desto kleiner ist sein Umfang. Der Klf signalisiert das Schlüsselmerkmal, das mit der Intension des Nomens der Identifizierung des Objekts dient. Der Klf individualisiert das Nomen, indem er Teilmengen quantifiziert. Er kann sich auf ein Objekt, eine bestimmte Anzahl von Objekten oder auf alle Objekte beziehen. Formal logisch lassen sich diese Funktionen mithilfe des Existenz- und des Allquantors darstellen. Auch die Nullstelle (NST) läßt sich formal logisch darstellen. Auf ihren jeweiligen Informationsgehalt reduziert, ergeben sich für Klf und NST abhängig von ihrer Positionierung verschiedene Informationswerte: Die Opposition von Klf und NST bewirkt in den Fragebögen ausschließlich skalare Q-Implikaturen, die sich durch die Informationsformeln in Form einer Horn-Skala darstellen lassen. In einem sich aufbauenden Kontext transportieren sowohl Klf als auch NST in der Kontextmitte bekannte Informationen, wodurch Implikaturen des M- bzw. I-Prinzips ausgelöst werden. Durch die Verbindung der Informationswerte mit den Implikaturen des Q-, M- und I-Prinzips lässt sich anhand der Positionierung direkt erkennen, wann der Klf die Funktion der Numerus-, der Definitheits- oder der Kontrast-Markierung erfüllt.