971 resultados para cartilage graft


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compression cell designed to fit inside an NMR spectrometer was used to investigate (i) the in situ dynamic strain response and structural changes of the internal pore network, and (ii) the diffusion and flow of interstitial water, in full thickness cartilage samples as they were mechanically deformed under a constant compressive load (pressure) and then allowed to recover (swell again) when the load was removed. Selective enzymatic digestion of the collagen fibril network and the glycopolysaccharide hyaluronic acid (HA) was performed to mimic some of the structural and compositional changes associated with osteoarthritis. Digestion of collagen gave rise to mechanical ‘dynamic softening’ and—perhaps more importantly—nearly complete loss in the ability to recover through swelling, both effects due to the disruption of the hierarchical structure and fibril interconnectivity in the collagen network which adversely affects its ability to deform reversibly and to properly regulate the pressurization and resulting rate and direction of interstitial fluid flow. In contrast, digestion of HA inside the collagen pore network caused the cartilage to ‘dynamically stiffen’ which is attributed to the decrease in the osmotic (entropic) pressure of the digested HA molecules confined in the cartilage pores that causes the network to contract and thereby become less permeable to flow. These digestioninduced changes in cartilage’s properties reveal a complex relationship between the molecular weight and concentration of the HA in the interstitial fluid, and the structure and properties of the collagen fibril pore network, and provide new insights into how changes in either could influence the onset and progression of osteoarthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well documented in literature that the coronary artery bypass graft is normally fail after a short period of time, due to the development of plaque known as intimal hyperplasia within the graft. Various in vivo and in vitro studies have linked the development of intimal hyperplasia to the abnormal hemodynamics and compliance mismatch. Therefore, it is essential to fully understand the relationship between the hemodynamics inside the coronary artery bypass and its mechanical and geometrical characteristics under the correct physiological conditions. In this work, hemodynamic of the bypass graft is studied numerically. The effect of the host and graft diameters ratio, the angle of anastomosis and the graft configuration on the local flow patterns and the distribution of wall shear stress are examined. The pulsatile waveforms boundary conditions are adopted from in vivo measurement data to study the hemodynamics of composite grafts namely Consequence and Y grafting in terms temporal and spatial distributions of the blood flows. Moreover, various non-Newtonian and Newtonian models of blood have been carried out to examine the numerical simulation of blood flow in stenosis artery. The results are presented and discussed for various operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mismatch in mechanical properties between synthetic vascular graft and arteries contribute to graft failure. The viscoelastic properties of arteries are conferred by elastin and collagen. In this study, the mechanical properties and cellular interactions of aligned nanofibrous polyurethane (PU) scaffolds blended with elastin, collagen or a mixture of both proteins were examined. Elastin softened PU to a peak stress and strain of 7.86 MPa and 112.28 % respectively, which are similar to those observed in blood vessels. Collagen-blended PU increased in peak stress to 28.14 MPa. The growth of smooth muscle cells (SMCs) on both collagen-blended and elastin/collagen-blended scaffold increased by 283 and 224 % respectively when compared to PU. Smooth muscle myosin staining indicated that the cells are contractile SMCs which are favored in vascular tissue engineering. Elastin and collagen are beneficial for creating compliant synthetic vascular grafts as elastin provided the necessary viscoelastic properties while collagen enhanced the cellular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Osteoarthritis (OA) most commonly affects the patellofemoral compartment of the knee, and is a major cause of pain and disability. Structural changes that evolve prior to the onset of symptoms can be visualised using magnetic resonance imaging (MRI). There is little known information about the role of adiposity on the early structural changes in the patella cartilage in younger, asymptomatic adult females.

Methods: One hundred and sixty asymptomatic women (20–49 years) participating in the Geelong Osteoporosis Study underwent knee MRI (2006–8). Weight and body mass index (BMI) were measured 10 years prior (1994–7, baseline) and at the time of MRI (current), with change over the period calculated (current–baseline). Relationships between measures of adiposity and patella cartilage volume and defects were examined.

Results: After adjustment for age and patella bone volume, there was a reduction of 13 ml (95% confidence interval (95% CI), −25.7, −0.55) in patella cartilage volume for every 1 unit increase in current BMI, and a reduction of 27 ml (95% CI −52.6, −1.5) per BMI unit increase over 10 years (P=0.04 for both). No significant association was observed between baseline BMI and patella cartilage volume (P=0.16). Increased baseline and current weight and BMI were associated with increased prevalence of patella cartilage defects (all P<0.001).

Conclusions: Adiposity and weight gain during midlife are associated with detrimental structural change at the patella in young to middle-aged healthy non-osteoarthritic women. Maintaining a healthy weight and avoiding weight gain in younger asymptomatic women may be important in the prevention of patellofemoral OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage is an example of a highly efficacious water-based, natural lubrication system that is optimized to provide low friction and wear protection at both low and high loads and sliding velocities. One of the secrets of cartilage's superior tribology comes from a unique, multimodal lubrication strategy consisting of both a fluid pressurization mediated lubrication mechanism and a boundary lubrication mechanism supported by surface bound macromolecules. Using a reconstituted network of highly interconnected cellulose fibers and simple modification through the immobilization of polyelectrolytes, we have recreated many of the mechanical and chemical properties of cartilage and the cartilage lubrication system to produce a purely synthetic material system that exhibits some of the same lubrication mechanisms, time dependent friction response, and high wear resistance as natural cartilage tissue. Friction and wear studies demonstrate how the properties of the cellulose fiber network can be used to control and optimize the lubrication and wear resistance of the material surfaces and highlight what key features of cartilage should be duplicated in order to produce a cartilage-mimetic lubrication system.