961 resultados para caries-affected dentin
Resumo:
Considerable progress has been achieved in recent years in treating children affected by bone diseases. Advances in the understanding of the molecular pathophysiology of genetic bone diseases have led to the development of enzyme replacement therapies for various lysosomal storage diseases, following the breakthrough initiated in treating Gaucher disease. Clinical studies are underway with tailored molecules correcting bone fragility and alleviating chronic bone pain and other manifestations of hypophosphatasia, or promoting growth of long bones in achondroplasia patients. We further report our very encouraging experience with intravenous bisphosphonate treatment in children suffering from secondary osteopenia and the high prevalence of calcium and vitamin D deficits in these severely disabled children.
Resumo:
We date turning points of the reference cycle for 19 Mediterranean countries andanalyze their structure and interdependences. Fluctuations are volatile and not highlycorrelated across countries; recessions are deep but asynchronous making average outputlosses in the area limited. Heterogeneities across countries and regions are substantial.Mediterranean cycles are time varying but their evolution is not linked withthe Euro-Mediterranean partnership process. The concordance of cyclical fluctuationsis poorly related to trade and financial linkages and to their evolution over time.
Resumo:
The concentration of orthophosphate ions released from Fe-K-P compounds (Fe3KH8(PO4)6 .6H2O and Fe3KH14(PO4)8 .4H2O) present in superphosphates increases with pH, which initially suggests that the agronomic effectiveness of P fertilizers containing high amounts of these compounds would also increase with soil pH but studies considering activity, instead of concentration, are necessary. With this purpose, both compounds were synthesized under laboratory conditions, characterized by elemental chemical analysis, optical microscopy, X ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), and used in a solubility study. Solutions of 0.01, 0.05 and 0.1 mol L-1 NaCl with pH adjusted to 3.0, 4.0, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 were prepared for the solubility study of H8-syn, H14-syn and a phosphate rock (PR) from Brazil. The orthophosphate activity as H2PO4- and HPO4(2-) was calculated in each situation as related to pH and ionic strength using software MINTEQ. The remaining precipitates after equilibrium were chemically analyzed and subjected to X ray, SEM and EDS. Results of chemical analysis and instrumental techniques confirmed the preparation method. The activity of orthophosphate ions of both compounds tended to decrease under increasing pH and/or ionic strength of the solution, which in turn suggests that an increase in the solution pH does not necessarily promote an increase in the P bioavailability for plant uptake. This can be important when evaluating agronomic data of P fertilizers with high contents of these two Fe-K-P compounds.
Resumo:
Résumé Il est actuellement reconnu que l'endothélium vasculaire joue un rôle primordial dans la genèse des maladies cardiovasculaires, notamment l'artériosclérose. Dès lors, il est important de pouvoir investiguer la fonction endothéliale en clinique. Pour ce faire, il est particulièrement simple d'examiner la microcirculation cutanée, car celle-ci est très simplement accessible, de manière non-invasive, par fluxmétrie laser-Doppler. Pratiquement, on mesure l'augmentation du flux sanguin dermique en réponse à des stimuli connus pour agir via l'endothélium vasculaire. Les stimuli endothélium-dépendants les plus courants sont l'interruption temporaire du flux sanguin qui est suivie d'une hyperémie réactive, et l'administration transcutanée d'acétylcholine (Ach) par iontophorèse. La iontophorèse consiste à obtenir le transfert d' une substance ionisée, telle l'Ach, par l'application d'un courant électrique de polarité appropriée. L'objectif du présent travail était de déterminer le rôle des prostaglandines dans ces réponse vasodilatatrices dépendante de l'endothélium, rôle actuellement peu clair. 23 jeunes hommes volontaires non fumeurs et en bonne santé habituelle ont été examinés lors de deux visites séparées par 1 à 3 semaines. Lors de chaque visite, l'hyperémie réactive et la réponse vasodilatatrice à l'Ach ont été déterminées dans la peau de l'avant bras après administration soit d'un placebo, soit d'un inhibiteur de la cyclooxygénase (COX, enzyme qui contrôle la synthèse des prostaglandines). Chez certains sujets, l'inhibiteur était de l'acétylsalicylate de lysine (900 mg par voie intraveineuse). Chez d'autres sujets, il s'agissait d'indométhacine. (75 mg par voie orale). Comme la stimulation nociceptive liée au courant iontophorétique peut influencer la réponse à l'Ach, celle-ci a été déterminée en présence et en l'absence d'anesthésie de surface (crème de lidocaine). La réponse à l'Ach a été obtenue pour 4 doses différentes de cet agent (exprimées sous la forme de la densité de charge iontophorétique appliquée : 0.28, 1.4, 7, et 14 millicoulombs par cm2 de peau exposée). Le flux sanguin dermique était mesuré par imagerie laser-Doppler, une variante de la fluxmétrie laser-Doppler classique permettant l'exploration d'une surface de peau de taille arbitraire. Quelle que soit la condition testée, nous n'avons jamais observé la moindre influence de l'inhibition de la COX sur l'hyperémie réactive, ni sur la réponse à l'Ach. Cette dernière était augmentée significativement par l'anesthésie cutanée, que les sujets aient reçu ou non de l'acétylsalicylate de lysine ou de l'indométhacine . Par exemple, la réponses moyenne (±SD) à la plus haute dose d'Ach (testée sur 6 sujets, et exprimée en unités de perfusion, comme il est d'usage en fluxmétrie laser-Doppler ) était la suivante : en l'absence d'anesthésie : acétylsalicylate de lysine 339 ± 105, placebo 344 ± 68 ; avec l'anesthésie : acétylsalicylate de lysine 453 ± 76 , placebo 452 ± 65 (p * 0.001 pour les effets de l'anesthésie). En conclusion, nos résultats infirment une contribution des prostaglandines à l'hyperémie réactive ou à la vasodilatation induite par l'acétylcholine dans la microcirculation cutanée. Dans ce lit vasculaire, l'anesthésie locale accroît la vasodilatation induite par l'acétylcholine par un mécanisme indépendant des prostaglandines.
Resumo:
Responses of leaf senescence to P supply could constitute adaptive mechanisms for plant growth under P-limiting conditions. The aim of this study was to evaluate the effects of soil P supply on leaf senescence of common bean (Phaseolus vulgaris L.). Eight P levels, ranging from 5 to 640 mg kg-1 P, were applied to pots containing four bean plants of cultivar Carioca in 10 kg of an Oxic Haplustult soil. Attached leaves were counted weekly, abscised leaves were collected every other day, and seeds were harvested at maturity. The number of live leaves increased until 48 days after emergence (DAE) and decreased afterwards, irrespective of applied P levels. At lower applied P levels, the initial increase and the final decrease of leaf number was weak, whereas at higher applied P levels the leaf number increased intensively at the beginning of the growth cycle and decreased strongly after 48 DAE. Dry matter and P accumulated in senesced leaves increased as soil P levels increased until 61 DAE, but differences between P treatments narrowed thereafter. The greatest amounts of dry mass and P deposited by senesced leaves were observed at 48-54 DAE for high P levels, at 62-68 DAE for intermediate P levels and at 69-76 DAE for low P levels. These results indicate that soil P supply did not affect the stage of maximal leaf number and the beginning of leaf senescence of common bean plants, but the stage of greatest deposition of senesced leaves occurred earlier in the growth cycle as the soil P supply was raised.
Resumo:
Selostus: Seleenilannoituksen vaikutus raiheinän ja salaatin laatuun
Resumo:
Agricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.
Resumo:
The ability of a soil to keep its structure under the erosive action of water is usually high in natural conditions and decreases under frequent and intensive cultivation. The effect of five tillage systems (NT = no-till; CP = chisel plowing and one secondary disking; CT = primary and two secondary distings; CTb = CT with crop residue burning; and CTr = CT with removal of crop residues from the field), combined with five nutrient sources (C = control, no nutrient application; MF = mineral fertilizers according to technical recommendations for each crop; PL = 5 Mg ha-1 y-1 fresh matter of poultry litter; CM = 60 m³ ha-1 y-1 slurry cattle manure; and SM = 40 m³ ha-1 y-1 slurry swine manure) on wet-aggregate stability was determined after nine years (four sampled soil layers) and on five sampling dates in the 10th year (two sampled soil layers) of the experiment. The size distribution of the air-dried aggregates was strongly affected by soil bulk density, and greater values of geometric mean diameter (GMD AD) found in some soil tillage or layer may be partly due to the higher compaction degree. After nine years, the GMD AD on the surface was greater in NT and CP compared to conventional tillage systems (CT, CTb and CTr), due to the higher organic matter content, as well as less soil mobilization. Aggregate stability in water, on the other hand, was affected by the low variation in previous gravimetric moisture of aggregates, which contributed to a high coefficient of variation of this attribute. The geometric mean diameter of water-stable aggregates (GMD WS) was highest in the 0.00-0.05 m layer in the NT system, in the layers 0.05-0.10 and 0.12-0.17 m in the CT, and values were intermediate in CP. The stability index (SI) in the surface layers was greater in treatments where crop residues were kept in the field (NT, CP and CT), which is associated with soil organic matter content. No differences were found in the layer 0.27-0.32 m. The effect of nutrient sources on GMD AD and GMD WS was small and did not affect SI.
Resumo:
Losses of productivity of flooded rice in the State of Rio Grande do Sul, Brazil, may occur in the Coastal Plains and in the Southern region due to the use of saline water from coastal rivers, ponds and the Laguna dos Patos lagoon, and the sensibility of the plants are variable according to its stage of development. The purpose of this research was to evaluate the production of rice grains and its components, spikelet sterility and the phenological development of rice at different levels of salinity in different periods of its cycle. The experiment was conducted in a greenhouse, in pots filled with 11 dm³ of an Albaqualf. The levels of salinity were 0.3 (control), 0.75, 1.5, 3.0 and 4.5 dS m-1 kept in the water layer by adding a salt solution of sodium chloride, except for the control, in different periods of rice development: tillering initiation to panicle initiation; tillering initiation to full flowering; tillering initiation to physiological maturity; panicle initiation to full flowering; panicle initiation to physiological maturity and full flowering to physiological maturity. The number of panicles per pot, the number of spikelets per panicle, the 1,000-kernel weight, the spikelet sterility, the grain yield and phenology were evaluated. All characteristics were negatively affected, in a quadratic manner, with increased salinity in all periods of rice development. Among the yield components evaluated, the one most closely related to grain yields of rice was the spikelet sterility.
Resumo:
In the State of Rio Grande do Sul, Brazil, flooded rice fields using Patos Lagoon as the source of water for irrigation are subject to be damaged by salinity, since this source is bound to the sea on its southern end. The sensitivity of rice is variable during plant development, being higher in the seedling and reproductive periods. However, there is not enough information about the behavior of plants under salt stress during the course of its development, especially in the vegetative stage. This study evaluated the effect of different levels of salinity of irrigation water on the salinity of soil solution over time and on some plant attributes, during the vegetative stage of rice. The study was conducted in a greenhouse, where seeds of the variety IRGA 424 were sown in pots and irrigated with water with electrical conductivity (ECi) levels of: 0.3, 0.75, 1.5, 3.0 and 4.5 dS m-1; from the tillering initiation (V4) until the panicle initiation (PI). The evaluations made were the electrical conductiviy of soil solution (ECe), the dry biomass of plants and stems, tillering, height and the transpiration of plants. The ECe increased with the ECi over time, and was determined by water transpiration flux in pots. The ECe values at the end of the experiment were high and, in most cases, higher than the critical values for flooded rice. The growth attributes of rice were negatively affected from ECi of 2.0 dS m-1 and ECe of 4.0 dS m-1.
Resumo:
Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.
Resumo:
Detrimental effects of glyphosate on plant mineral nutrition have been reported in the literature, particularly on Mn uptake and redistribution. However, in most of the experiments conducted so far glyphosate-susceptible plants were used. Effects of glyphosate on Mn absorption kinetics, accumulation, and distribution within the plant, as well as soybean response to Mn as affected by glyphosate were studied in three experiments. In the first experiment, in nutrient solution, the effect of glyphosate on soybean Mn uptake kinetic parameters (Imax, Km and Cmin) was determined. In a second experiment, also in nutrient solution, differential Mn accumulation and distribution were studied for a conventional soybean cultivar and its near-isogenic glyphosate-resistant counterpart as affected by glyphosate. In a third experiment, response of glyphosate-resistant soybean cultivars to Mn application was studied in the presence of glyphosate, in pots with Mn-deficient soil. Maximum Mn influx (Imax) was higher in the herbicide-resistant (GR) cultivar than in its conventional counterpart. Glyphosate applied to nutrient solution at low rates decreased Km and Cmin. A few days after herbicide treatment, RR soybean plants developed yellowish leaves, a symptom which, in the field, could be misinterpreted as Mn deficiency, but herbicide application had no effect on Mn uptake or distribution within the plant. In the soil experiment, soybean Mn uptake was increased by Mn application, with no effect of glyphosate. Under greenhouse conditions, there was no evidence of deleterious effects of glyphosate on Mn absorption, accumulation and distribution in the plant and on soybean cultivars response to Mn application.
Resumo:
Lime and gypsum influence nutrient availability and uptake, as well as the content of organic acids in the aerial plant parts. These changes, quantified by plant analysis of soluble nutrients, may potentiate the effect of soil amendment, ensuring the sustainability of the no-tillage system. In this sense the effect of lime and gypsum surface application on the content of water-soluble nutrients in peanut and oat residues was evaluated. The experiment was conducted on an Oxisol in Botucatu (SP) in the growing seasons 2004/2005 and 2005/2006. It was arranged in a randomized block design in split plots with four replications, where lime rates represented the plots and presence or absence of gypsum application the subplots. Peanut was grown in summer and white oat in the winter in the entire experimental area. Gypsum applied to peanut increased soluble Ca only in the first season, due to the short period between product application and determination of soluble nutrient contents in the plant extract. Liming of peanut and oat increased soluble Ca, Mg, K contents, did not alter Cu content and reduced Zn, Mn and Fe contents in both years of cultivation. Gypsum on the other hand reduced the electrical conductivity of peanut (2004/2005 and 2005/2006) and white oat (2004/2005).
Resumo:
Soils of the coastal plains of Rio Grande do Sul, Brazil, are affected by salinization, which can hamper the establishment and development of crops in general, including rice. The application of high doses of KCl may aggravate the crop damage, due to the high saline content of this fertilizer. This study aimed to evaluate the effect of K fertilizer management on some properties of rice plant, grown in soils with different sodicity levels, and determine which attribute is best related to yield. The field study was conducted in four Albaqualfs with exchangeable Na percentages of 5.6, 9.0, 21 and 32 %. The management of KCl fertilizer consisted of the application of 90 kg ha-1 K2O broadcast, 90 kg ha-1 K2O in the row and 45 kg ha-1 K2O in the row + 45 kg ha-1 K2O at panicle initiation (PI). Plant density, dry matter evolution, height, SPAD (Soil Plant Analysis Development value indicating relative chlorophyll contents) index, tiller mass, 1,000-grain weight, panicle length and grain yield were evaluated. The plant density was damaged by application of K fertilizer in the row, especially at full dose (90 kg ha-1), at three sodicity levels, resulting in loss in biomass accumulation in later stages, affecting the crop yield, even at the lowest level of soil sodicity (5.6 %). All properties were correlated with yield; the highest positive correlation was found with plant density and shoot dry matter at full flowering, and a negative correlation with panicle length.