980 resultados para capture into 1 : 1 resonance


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two chemokine (chemoattractant cytokines) beta peptides, macrophage inflammatory proteins 1 alpha and 1 beta (MIP-1 alpha and MIP-1 beta), were induced in human monocyte cultures following infection with the human immunodeficiency virus type 1 (HIV-1). Induction depended on productive viral infection: not only did the kinetics of MIP-1 peptide induction closely follow those of viral replication, but monocyte cultures inoculated with heat-inactivated virus or infected in the presence of AZT failed to produce these chemokine beta peptides. In addition, HIV infection markedly altered the pattern of beta chemokine expression elicited by tumor necrosis factor (TNF), itself a potent proinflammatory cytokine upregulated during the development of AIDS. Reverse transcription (RT)-PCR and RT-in situ PCR studies on brain tissue from patients with AIDS dementia demonstrated elevated MIP-1 alpha and MIP-1 beta mRNA expression relative to comparable samples from HIV-1-infected patients without dementia. Cells expressing chemokines in HIV-1-infected brains were identified morphologically as microglia and astrocytes. As MIP-1 alpha and MIP-1 beta are potent chemoattractants for both monocytes and specific subpopulations of lymphocytes, this dysregulation of beta chemokine expression may influence the trafficking of leukocytes during HIV infection. These data, taken together, suggest a mechanism by which HIV-1-infected monocytes might recruit uninfected T cells and monocytes to sites of active viral replication or inflammation, notably the brain and lymph nodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integration of human immunodeficiency virus type 1 cDNA into a target DNA can be strongly influenced by the conformation of the target. For example, integration in vitro is sometimes favored in target DNAs containing sequence-directed bends or DNA distortions caused by bound proteins. We have analyzed the effect of DNA bending by studying integration into two well-characterized protein-DNA complexes: Escherichia coli integration host factor (IHF) protein bound to a phage IHF site, and the DNA binding domain of human lymphoid enhancer factor (LEF) bound to a LEF site. Both of these proteins have previously been reported to bend DNA by approximately 140 degrees. Binding of IHF greatly increases the efficiency of in vitro integration at hotspots within the IHF site. We analyzed a series of mutants in which the IHF site was modified at the most prominent hotspot. We found that each variant still displayed enhanced integration upon IHF binding. Evidently the local sequence is not critical for formation of an IHF hotspot. LEF binding did not create preferred sites for integration. The different effects of IHF and LEF binding can be rationalized in terms of the different proposed conformations of the two protein-DNA complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic susceptibility weighting based on the echo-shifting principle combined with multiple gradient echoes per excitation. Motor stimulation, induced by self-paced finger tapping, reliably produced significant signal increase in the hand region of the contralateral primary motor cortex in every subject tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The third variable region (V3 loop) of gp120, the HIV-1 surface envelope glycoprotein, plays a key role in HIV-1 infection and pathogenesis. Recently, we reported that a synthetic multibranched peptide (SPC3) containing eight V3-loop consensus motifs (GPGRAF) inhibited HIV-1 infection in both CD4+ and CD4- susceptible cells. In the present study, we investigated the mechanisms of action of SPC3 in these cell types--i.e., CD4+ lymphocytes and CD4- epithelial cells expressing galactosylceramide (GalCer), an alternative receptor for HIV-1 gp120. We found that SPC3 was a potent inhibitor of HIV-1 infection in CD4+ lymphocytes when added 1 h after initial exposure of the cells to HIV-1, whereas it had no inhibitory effect when present only before and/or during the incubation with HIV-1. These data suggested that SPC3 did not inhibit the binding of HIV-1 to CD4+ lymphocytes but interfered with a post-binding step necessary for virus entry. In agreement with this hypothesis, SPC3 treatment after HIV-1 exposure dramatically reduced the number of infected cells without altering gp120-CD4 interaction or viral gene expression. In contrast, SPC3 blocked HIV-1 entry into CD4-/GalCer+ human colon epithelial cells when present in competition with HIV-1 but had no effect when added after infection. Accordingly, SPC3 was found to inhibit the binding of gp120 to the GalCer receptor. Thus, the data suggest that SPC3 affects HIV-1 infection by two distinct mechanisms: (i) prevention of GalCer-mediated HIV-1 attachment to the surface of CD4-/GalCer+ cells and (ii) post-binding inhibition of HIV-1 entry into CD4+ lymphocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This folder contains three letters originally sewn to the front inside cover of Volume 1 of Sewall's bound lectures (HUG 1782 Box 3). A fourth letter is still glued to the inside front cover and listed with the volume. The three letters consist of a letter from B. Kennicott to Stephen Sewall, May 14, 1771 and two letters written in French from Antoine Court de Gébelin to Stephen Sewall, one written on March 3, 1780, and the second received on November 18, 1783. The letter from Benjamin Kennicott acknowledges Sewall's letter to him and offers instructions for paying for a subscription to Kennicott's work. A portion of the missing text from Box 1 can be found in this folder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le VIH infecte les cellules par fusion de sa membrane avec la membrane de la cellule cible. Cette fusion est effectuée par les glycoprotéines de l'enveloppe (Env) qui sont synthétisées en tant que précurseur, gp160, qui est ensuite clivé en gp120 et gp41. La protéine gp41 est la partie transmembranaire du complexe de l'enveloppe et l’ancre à la particule virale alors que la gp120 assure la liaison au récepteur cellulaire CD4 et corécepteur CCR5 ou CXCR4. Ces interactions successives induisent des changements de conformation d’Env qui alimentent le processus d'entrée du virus conduisant finalement à l'insertion du peptide de fusion de la gp41 dans la membrane de la cellule cible. La sous-unité extérieure gp120 contient cinq régions variables (V1 à V5), dont trois (V1, V2 et V3) étant capables d’empêcher l’adoption spontanée de la conformation liée à CD4. Cependant, le rôle de régions variables V4 et V5 vis-à-vis de ces changements de conformation reste inconnu. Pour étudier leur effet, des mutants de l'isolat primaire de clade B YU2, comprenant une délétion de la V5 ou une mutation au niveau de tous les sites potentiels de N-glycosylation de la V4 (PNGS), ont été générés. L'effet des mutations sur la conformation des glycoprotéines d'enveloppe a été analysé par immunoprécipitation et résonance de plasmon de surface avec des anticorps dont la liaison dépend de la conformation adopté par la gp120. Ni le retrait des PNGS de la V4 ni la délétion de V5 n’a affecté les changements conformationnels d’Env tels que mesurés par ces techniques, ce qui suggère que les régions variables V1, V2 et V3 sont les principaux acteurs dans la prévention de l’adoption de la conformation lié de CD4 d’Env.