929 resultados para capacity utilization rate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The study reviewed one year of Texas hospital discharge data and Trauma Registry data for the 22 trauma services regions in Texas to identify regional variations in capacity, process of care and clinical outcomes for trauma patients, and analyze the statistical associations among capacity, process of care, and outcomes. ^ Methods. Cross sectional study design covering one year of state-wide Texas data. Indicators of trauma capacity, trauma care processes, and clinical outcomes were defined and data were collected on each indicator. Descriptive analyses were conducted of regional variations in trauma capacity, process of care, and clinical outcomes at all trauma centers, at Level I and II trauma centers and at Level III and IV trauma centers. Multilevel regression models were performed to test the relations among trauma capacity, process of care, and outcome measures at all trauma centers, at Level I and II trauma centers and at Level III and IV trauma centers while controlling for confounders such as age, gender, race/ethnicity, injury severity, level of trauma centers and urbanization. ^ Results. Significant regional variation was found among the 22 trauma services regions across Texas in trauma capacity, process of care, and clinical outcomes. The regional trauma bed rate, the average staffed bed per 100,000 varied significantly by trauma service region. Pre-hospital trauma care processes were significantly variable by region---EMS time, transfer time, and triage. Clinical outcomes including mortality, hospital and intensive care unit length of stay, and hospital charges also varied significantly by region. In multilevel regression analysis, the average trauma bed rate was significantly related to trauma care processes including ambulance delivery time, transfer time, and triage after controlling for age, gender, race/ethnicity, injury severity, level of trauma centers, and urbanization at all trauma centers. Transfer time only among processes of care was significant with the average trauma bed rate by region at Level III and IV. Also trauma mortality only among outcomes measures was significantly associated with the average trauma bed rate by region at all trauma centers. Hospital charges only among outcomes measures were statistically related to trauma bed rate at Level I and II trauma centers. The effect of confounders on processes and outcomes such as age, gender, race/ethnicity, injury severity, and urbanization was found significantly variable by level of trauma centers. ^ Conclusions. Regional variation in trauma capacity, process, and outcomes in Texas was extensive. Trauma capacity, age, gender, race/ethnicity, injury severity, level of trauma centers and urbanization were significantly associated with trauma process and clinical outcomes depending on level of trauma centers. ^ Key words: regionalized trauma systems, trauma capacity, pre-hospital trauma care, process, trauma outcomes, trauma performance, evaluation measures, regional variations ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study demonstrated that accurate, short-term forecasts of Veterans Affairs (VA) hospital utilization can be made using the Patient Treatment File (PTF), the inpatient discharge database of the VA. Accurate, short-term forecasts of two years or less can reduce required inventory levels, improve allocation of resources, and are essential for better financial management. These are all necessary achievements in an era of cost-containment.^ Six years of non-psychiatric discharge records were extracted from the PTF and used to calculate four indicators of VA hospital utilization: average length of stay, discharge rate, multi-stay rate (a measure of readmissions) and days of care provided. National and regional levels of these indicators were described and compared for fiscal year 1984 (FY84) to FY89 inclusive.^ Using the observed levels of utilization for the 48 months between FY84 and FY87, five techniques were used to forecast monthly levels of utilization for FY88 and FY89. Forecasts were compared to the observed levels of utilization for these years. Monthly forecasts were also produced for FY90 and FY91.^ Forecasts for days of care provided were not produced. Current inpatients with very long lengths of stay contribute a substantial amount of this indicator and it cannot be accurately calculated.^ During the six year period between FY84 and FY89, average length of stay declined substantially, nationally and regionally. The discharge rate was relatively stable, while the multi-stay rate increased slightly during this period. FY90 and FY91 forecasts show a continued decline in the average length of stay, while the discharge rate is forecast to decline slightly and the multi-stay rate is forecast to increase very slightly.^ Over a 24 month ahead period, all three indicators were forecast within a 10 percent average monthly error. The 12-month ahead forecast errors were slightly lower. Average length of stay was less easily forecast, while the multi-stay rate was the easiest indicator to forecast.^ No single technique performed significantly better as determined by the Mean Absolute Percent Error, a standard measure of error. However, Autoregressive Integrated Moving Average (ARIMA) models performed well overall and are recommended for short-term forecasting of VA hospital utilization. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past five years we have developed three emission calorimeters (EC) that can be used to evaluate mass generation and utilization of gasses. We have tested various treatments that significantly reduced ammonia generation by laying hen manure (Harrison and Koelkebeck, 2002; 2003).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) poses a severe threat to tropical coral reefs, yet much of what is know about these effects comes from individual corals and algae incubated in isolation under high pCO2. Studies of similar effects on coral reef communities are scarce. To investigate the response of coral reef communities to OA, we used large outdoor flumes in which communities composed of calcified algae, corals, and sediment were combined to match the percentage cover of benthic communities in the shallow back reef of Moorea, French Polynesia. Reef communities in the flumes were exposed to ambient (400 ?atm) and high pCO2 (1300 ?atm) for 8 weeks, and calcification rates measured for the constructed communities including the sediments. Community calcification was reduced by 59% under high pCO2, with sediment dissolution explaining ~ 50% of this decrease; net calcification of corals and calcified algae remained positive but was reduced by 29% under elevated pCO2. These results show that, despite the capacity of coral reef calcifiers to maintain positive net accretion of calcium carbonate under OA conditions, reef communities might transition to net dissolution as pCO2 increases, particularly at night, due to enhanced sediment dissolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of total organic carbon (TOC) were determined on samples collected during six cruises in the northern Arabian Sea during the 1995 US JGOFS Arabian Sea Process Study. Total organic carbon concentrations and integrated stocks in the upper ocean varied both spatially and seasonally. Highest mixed-layer TOC concentrations (80-100 µM C) were observed near the coast when upwelling was not active, while upwelling tended to reduce local concentrations. In the open ocean, highest mixed-layer TOC concentrations (80-95 µM C) developed in winter (period of the NE Monsoon) and remained through mid summer (early to mid-SW Monsoon). Lowest open ocean mixed-layer concentrations (65-75 µM C) occurred late in the summer (late SW Monsoon) and during the Fall Intermonsoon period. The changes in TOC concentrations resulted in seasonal variations in mean TOC stocks (upper 150 m) of 1.5-2 mole C/m**2, with the lowest stocks found late in the summer during the SW Monsoon-Fall Intermonsoon transition. The seasonal accumulation of TOC north of 15°N was 31-41 x 10**12 g C, mostly taking place over the period of the NE Monsoon, and equivalent to 6-8% of annual primary production estimated for that region in the mid-1970s. A net TOC production rate of 12 mmole C/m**2/d over the period of the NE Monsoon represented ~80% of net community production. Net TOC production was nil during the SW Monsoon, so vertical export would have dominated the export terms over that period. Total organic carbon concentrations varied in vertical profiles with the vertical layering of the water masses, with the Persian Gulf Water TOC concentrations showing a clear signal. Deep water (>2000 m) TOC concentrations were uniform across the basin and over the period of the cruises, averaging 42.3±1.4 µM C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total organic carbon (TOC) was analyzed on four transects along 140°W in 1992 using a high temperature combustion/discrete injection (HTC/DI) analyzer. For two of the transects, the analyses were conducted on-board ship. Mixed-layer concentrations of organic carbon varied from about 80 µM C at either end of the transect (12°N and 12°S) to about 60 µM C at the equator. Total organic carbon concentrations decreased rapidly below the mixed-layer to about 38-40 µM C at 1000 m across the transect. Little variation was observed below this depth; deep water concentrations below 2000 m were virtually monotonic at about 36 µM C. Repeat measurements made on subsequent cruises consistently found the same concentrations at 1000 m or deeper, but substantial variations were observed in the mixed-layer and the upper water column above 400 m depth. Linear mixing models of total organic carbon versus sigmaT exhibited zones of organic carbon formation and consumption. TOC was found to be inversely correlated with apparent oxygen utilization (AOU) in the region between the mixed-layer and the oxygen minimum. In the mixed-layer, TOC concentrations varied seasonally. Part of the variations in TOC at the equator was driven by changes in the upwelling rate in response to variations in physical forcing related to an El Niño and to the passage of tropical instability waves. TOC export fluxes, calculated from simple box models, averaged 8±4 mmol C/m**2/day at the equator and also varied seasonally. These export fluxes account for 50-75% of the total carbon deficit and are consistent with other estimates and model predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contributions of total organic carbon and nitrogen to elemental cycling in the surface layer of the Sargasso Sea are evaluated using a 5-yr time-series data set (1994-1998). Surface-layer total organic carbon (TOC) and total organic nitrogen (TON) concentrations ranged from 60 to 70 µM C and 4 to 5.5 µM N seasonally, resulting in a mean C : N molar ratio of 14.4±2.2. The highest surface concentrations varied little during individual summer periods, indicating that net TOC production ceased during the highly oligotrophic summer season. Winter overturn and mixing of the water column were both the cause of concentration reductions and the trigger for net TOC production each year following nutrient entrainment and subsequent new production. The net production of TOC varied with the maximum in the winter mixed-layer depth (MLD), with greater mixing supporting the greatest net production of TOC. In winter 1995, the TOC stock increased by 1.4 mol C/m**2 in response to maximum mixing depths of 260 m. In subsequent years experiencing shallower maxima in MLD (<220 m), TOC stocks increased <0.7 mol C/m**2. Overturn of the water column served to export TOC to depth (>100 m), with the amount exported dependent on the depth of mixing (total export ranged from 0.4 to 1.4 mol C/m**2/yr). The exported TOC was comprised both of material resident in the surface layer during late summer (resident TOC) and material newly produced during the spring bloom period (fresh TOC). Export of resident TOC ranged from 0.5 to 0.8 mol C/m**2/yr, covarying with the maximum winter MLD. Export of fresh TOC varied from nil to 0.8 mol C/m**2/yr. Fresh TOC was exported only after a threshold maximum winter MLD of ~200 m was reached. In years with shallower mixing, fresh TOC export and net TOC production in the surface layer were greatly reduced. The decay rates of the exported TOC also covaried with maximum MLD. The year with deepest mixing resulted in the highest export and the highest decay rate (0.003 1/d) while shallow and low export resulted in low decay rates (0.0002 1/d), likely a consequence of the quality of material exported. The exported TOC supported oxygen utilization at dC : dO2 molar ratios ranging from 0.17 when TOC export was low to 0.47 when it was high. We estimate that exported TOC drove 15-41% of the annual oxygen utilization rates in the 100-400 m depth range. Finally, there was a lack of variability in the surface-layer TON signal during summer. The lack of a summer signal for net TON production suggests a small role for N2 fixation at the site. We hypothesize that if N2 fixation is responsible for elevated N : P ratios in the main thermocline of the Sargasso Sea, then the process must take place south of Bermuda and the signal transported north with the Gulf Stream system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic climate change confronts marine organisms with rapid trends of concomitant warming and CO2 induced ocean acidification. The survival and distribution of species partly depend on their ability to exploit their physiological plasticity during acclimatization. Therefore, in laboratory studies the effects of simulated future ocean acidification on thermal tolerance, energy metabolism and acid-base regulation capacity of the North Sea population of the blue mussel Mytilus edulis were examined. Following one month of pre-acclimation to 10 °C and control CO2 levels, mussels were exposed for two weeks to control and projected oceanic CO2 levels (390, 750 and 1120 µatm) before being subjected to a stepwise warming protocol between 10 °C and 31 °C (+ 3 °C each night). Oxygen consumption and heart rates, anaerobic metabolite levels and haemolymph acid-base status were determined at each temperature. CO2 exposure left oxygen consumption rate unchanged at acclimation temperature but caused a somewhat stronger increase during acute warming and thus mildly higher Q10-values than seen in controls. Interestingly, the thermally induced limitation of oxygen consumption rate set in earlier in normocapnic than in hypercapnic (1120 µatm CO2) mussels (25.2 °C vs. 28.8 °C), likely due to an onset of metabolic depression in the control group following warming. However, the temperature induced increase in heart rate became limited above 25 °C in both groups indicating an unchanged pejus temperature regardless of CO2 treatment. An upper critical temperature was reached above 28 °C in both treatments indicated by the accumulation of anaerobic metabolites in the mantle tissue, paralleled by a strong increase in haemolymph PCO2 at 31 °C. Ocean acidification caused a decrease in haemolymph pH. The extracellular acidosis remained largely uncompensated despite some bicarbonate accumulation. In all treatments animals developed a progressive warming-induced extracellular acidosis. A stronger pH drop at around 25 °C was followed by stagnating heart rates. However, normocapnic mussels enhanced bicarbonate accumulation at the critical limit, a strategy no longer available to hypercapnic mussels. In conclusion, CO2 has small effects on the response patterns of mussels to warming, leaving thermal thresholds largely unaffected. High resilience of adult North Sea mussels to future ocean acidification indicates that sensitivity to thermal stress is more relevant in shaping the response to future climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification is expected to lower the net accretion of coral reefs yet little is known about its effect on coral photophysiology. This study investigated the effect of increasing CO2 on photosynthetic capacity and photoprotection in Acropora formosa. The photoprotective role of photorespiration within dinoflagellates (genus Symbiodinium) has largely been overlooked due to focus on the presence of a carbon-concentrating mechanism despite the evolutionary persistence of a Form II Rubisco. The photorespiratory fixation of oxygen produces phosphoglycolate that would otherwise inhibit carbon fixation though the Calvin cycle if it were not converted to glycolate by phosphoglycolate phosphatase (PGPase). Glycolate is then either excreted or dealt with by enzymes in the photorespiratory glycolate and/or glycerate pathways adding to the pool of carbon fixed in photosynthesis. We found that CO2 enrichment led to enhanced photoacclimation (increased chlorophyll a per cell) to the subsaturating light levels. Light-enhanced dark respiration per cell and xanthophyll de-epoxidation increased, with resultant decreases in photosynthetic capacity (Pnmax) per chlorophyll. The conservative CO2 emission scenario (A1B; 600-790 ppm) led to a 38% increase in the Pnmax per cell whereas the 'business-as-usual' scenario (A1F1; 1160-1500 ppm) led to a 45% reduction in PGPase expression and no change in Pnmax per cell. These findings support an important functional role for PGPase in dinoflagellates that is potentially compromised under CO2 enrichment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000 µatm CO2 and a temperature rise of 1.5-3.0 °C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM. In short-term pH drift experiments, only treatment with the carbonic anhydrase inhibitor ethoxyzolamide (EZ) slowed down the rise in pH considerably. EZ was also the only inhibitor that altered the final pH attained, although marginally. In growth experiments, CO2 availability was manipulated by changing the pH in closed flasks at a fixed dissolved inorganic carbon (DIC) concentration. Low-light-treated samples showed lower growth rates in elevated CO2conditions. No CO2 effect was recorded under high light exposure. The maximal photosynthetic capacity, however, increased with CO2 concentration in saturating, but not in subsaturating, light intensities. Growth and photosynthetic capacity therefore responded in opposite ways to increasing CO2 availability. The capacity to photoacclimate to high and low photon flux appeared not to be affected by CO2treatments. However, photoacclimation was restricted to growth photon fluxes between 30 and 300 µmol photons m-2 s-1. The light saturation points for photosynthetic electron transport and for growth coincided at 100 µmol photons m-2 s-1. Below 100 µmol photons m-2 s-1 the light saturation point for photosynthesis was higher than the growth photon flux (i.e. photosynthesis was not light saturated under growth conditions), whereas at higher growth photon flux, photosynthesis was saturated below growth light levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parameters in the photosynthesis-irradiance (P-E) relationship of phytoplankton were measured at weekly to bi-weekly intervals for 20 yr at 6 stations on the Rhode River, Maryland (USA). Variability in the light-saturated photosynthetic rate, PBmax, was partitioned into interannual, seasonal, and spatial components. The seasonal component of the variance was greatest, followed by interannual and then spatial. Physiological models of PBmax based on balanced growth or photoacclimation predicted the overall mean and most of the range, but not individual observations, and failed to capture important features of the seasonal and interannual variability. PBmax correlated most strongly with temperature and the concentration of dissolved inorganic carbon (IC), with lesser correlations with chlorophyll a, diffuse attenuation coefficient, and a principal component of the species composition. In statistical models, temperature and IC correlated best with the seasonal pattern, but temperature peaked in late July, out of phase with PBmax, which peaked in September, coincident with the maximum in monthly averaged IC concentration. In contrast with the seasonal pattern, temperature did not contribute to interannual variation, which instead was governed by IC and the additional lesser correlates. Spatial variation was relatively weak and uncorrelated with ancillary measurements. The results demonstrate that both the overall distribution of PBmax and its relationship with environmental correlates may vary from year to year. Coefficients in empirical statistical models became stable after including 7 to 10 yr of data. The main correlates of PBmax are amenable to automated monitoring, so that future estimates of primary production might be made without labor-intensive incubations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study tested the hypothesis that the response of corals to temperature and pCO2 is consistent between taxa. Juvenile massive Porites spp. and branches of P. rus from the back reef of Moorea were incubated for 1 month under combinations of temperature (29.3 °C and 25.6 °C) and pCO2 (41.6 Pa and 81.5 Pa) at an irradiance of 599 µmol quanta/m/s. Using microcosms and CO2 gas mixing technology, treatments were created in a partly nested design (tanks) with two between-plot factors (temperature and pCO2), and one within-plot factor (taxon); calcification was used as a dependent variable. pCO2 and temperature independently affected calcification, but the response differed between taxa. Massive Porites spp. was largely unaffected by the treatments, but P. rus grew 50% faster at 29.3 °C compared with 25.6 °C, and 28% slower at 81.5 Pa vs. 41.6 Pa CO2. A compilation of studies placed the present results in a broader context and tested the hypothesis that calcification for individual coral genera is independent of pH, [HCO3]-, and [CO3]2-. Unlike recent reviews, this analysis was restricted to studies reporting calcification in units that could be converted to nmol CaCO3/cm**2/h. The compilation revealed a high degree of variation in calcification as a function of pH, [HCO3]-, and [CO3]2-, and supported three conclusions: (1) studies of the effects of ocean acidification on corals need to pay closer attention to reducing variance in experimental outcomes to achieve stronger synthetic capacity, (2) coral genera respond in dissimilar ways to pH, [HCO3]-, and [CO3]2-, and (3) calcification of massive Porites spp. is relatively resistant to short exposures of increased pCO2, similar to that expected within 100 y.