495 resultados para buckling
Resumo:
Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.
Resumo:
We present a systematic investigation of morphological transitions in poly vinylacetate Langmuir monolayers. On compression, the polymer monolayer is converted to a continuous membrane with a thickness of similar to 2-3 nm. Above a certain surface concentration the monolayer, on water, undergoes a morphological transition-buckling, leading to formation of striped patterns of period of lambda(b)similar to 160 nm, as determined from in situ grazing incidence small angle x-ray scattering measurements. The obtained value is much smaller than what has been typically observed for Langmuir monolayers on water or thin films on soft substrates. Using existing theories for buckling of fluidlike films on fluid substrates, we obtain very low values of bending rigidity and Young's modulus of the polymer monolayer compared to that observed earlier for lipid or polymeric monolayers. Since buckling in these monolayers occurs only above a certain surface concentration, we have looked at the possibility that the buckling in these films occurs due to changes in their mechanical properties under compression. Using the model of Huang and Suo of buckling of solidlike films on viscoelastic substrates, we find values of the mechanical properties, which are much closer to the bulk values but still significantly lower. Although the reduction could be along the lines of what has been observed earlier for ultrathin polymer film or surface layers of polymers, the possibility of micromechanical effects also determining the buckling in such polymer monolayers cannot be ruled out. We have provided possible explanation of the buckling of the poly vinylacetate monolayers in terms of the change in isothermal compression modulus with surface concentration.
Resumo:
An improved higher order transverse shear deformation theory is employed to arrive at modified constitutive relations which can be used in the flexural, buckling and vibration analysis of laminated plates and shells. The strain energy for such systems is then expressed in terms of the displacements and the rotations for ready reference and use. Numerical values of vibration frequencies are obtained using this formulation employing Ritz's method of analysis. The results are compared with those available in the literature to validate the analysis presented.
Resumo:
Due to their efficiency, lightweight, ease of erection and low cost, steel and aluminium thin-walled structures have become very popular in the construction industry over the past few decades. Applications include roof and wall systems (purlins and girts), storage racks, and composite concrete and steel slabs. The effectiveness of these structures lies in the cross-sectional shape of the profiles which enhances their strength by controlling the three fundamental buckling modes: local, distortional, and global. However, despite the attractiveness of these structures, steel and aluminium are greenhouse gas intensive materials and do not produce sustainable structural products. This paper presents an investigation performed at the Griffith School of Engineering, Griffith University, which shows manufacturing these types of profiles in timber is possible. Short composite thinwalled timber Cee-sections (500 mm long) were fabricated by gluing together thin softwood (Araucaria cunninghamii) veneers (1 mm thick). Two types of Ceesections were considered, one with a web stiffener to increase the local buckling capacity of the profile and one without. The profiles were tested in compression and the test results are presented and discussed in the paper in terms of structural behaviour and performance. Further research directions are proposed in order to provide efficient and lightweight sustainable structural products to the timber industry. © RILEM 2014.
Resumo:
This paper compares the structural performance between thin-walled timber and FRP-timber composite Cee-sections. While, thin-walled composite timber structures have been proven to be efficient and ultra-light structural elements, their manufacturing is difficult and labour intensive. Significant effort and time is required to prevent the cracking of the transverse timber veneers, bent in the grain direction, when forming the cross-sectional shape. FRP-timber structures overcome this disadvantage by replacing the transverse veneers with flexible, unidirectional FRP material and only keeping the timber veneers which are bent in their natural rolling direction. The Cee-sections investigated in this study were 210 mm deep × 90 mm wide × 500 mm high and manufactured from five plies. For both section types, the three internal plies were thin (1 mm thick) softwood Hoop pine (Araucaria cunninghamii) veneers, orientated along the section longitudinal axis. The two outer layers, providing bending stiffness to the walls, were Hoop pine veneers (1 mm thick) for the timber sections and glass fibre reinforced plastic (0.73 mm thick) for the FRP-timber sections orientated perpendicular to the inner layers. The manufacturing process is briefly introduced in this paper. The profiles were fitted with strain gauges and tested in compression. Linear Variable Displacement Transducers also recorded the buckling along one flange. The test results are presented and discussed in this paper in regards to their structural behaviour and performance. Results showed that the use of FRP in the sections increases both the elastic local buckling load and section capacity, the latter being increased by about 24 percent. The results indicate that thin-walled FRP-timber can ultimately be used as a sustainable alternative to cold-formed steel profiles.
Resumo:
Lipped channel beams (LCBs) are commonly used as flexural members such as floor joists and bearers in the construction 6 industry. These thin-walled LCBs are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable 7 research in this area, some recent studies have shown that the current web crippling design rules are unable to predict the test capacities under 8 end-two-flange (ETF) and interior-two-flange (ITF) load conditions. In many instances, web crippling predictions by the available design 9 standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 are inconsistent, i.e., unconservative in some cases, although they 10 are conservative in other cases. Hence, experimental studies consisting of 36 tests were conducted in this research to assess the web crippling 11 behavior and capacities of high-strength LCBs under two-flange load cases (ETF and ITF). Experimental results were then compared with the 12 predictions from current design rules. Comparison of the ultimate web crippling capacities from tests showed that the design equations are 13 very unconservative for LCB sections under the ETF load case and are conservative for the ITF load case. Hence, improved equations were 14 proposed to determine the web crippling capacities of LCBs based on the experimental results from this study. Current design equations do 15 not provide the direct strength method (DSM) provisions for web crippling. Hence, suitable design rules were also developed under the DSM 16 format using the test results and buckling analyses using finite-element analyses.
Resumo:
Thin-walled steel hollow flange channel beams known as LiteSteel beam (LSB) sections were developed for use as joists and bearers in various flooring systems. However, they are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable research in this area, much of the current design predictions for cold-formed steel sections are not directly applicable to LSBs. This is due to the geometry of the LSB, which consists of two closed rectangular hollow flanges, and its unique residual stress characteristics and initial geometric imperfections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs with their flanges fastened to supports. Thirty nine web crippling tests were conducted under two flange load cases (End Two Flange (ETF) and Interior Two Flange (ITF)). Test results showed that for ETF load case the web crippling capacities increased by 50% on average while they increased by 97% for ITF load case when flanges were fastened to supports. Comparison of the ultimate web crippling capacities from tests showed that AS/NZS 4600 and AISI S100 web crippling design equations are conservative for LSB sections with flanges fastened to supports under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs with flanges fastened to supports. This paper presents the details of the experimental study into the web crippling behaviour of LSB sections with their flanges fastened under ETF and ITF load cases, and the results.
Resumo:
The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange channel beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This process enables the end users to choose an effective combination of different web and flange plate sizes to achieve optimum design capacities. Recent research studies focused mainly on the shear behaviour of the most commonly used lipped channel beam and welded hollow flange beam sections. However, the shear behaviour of rivet fastened RHFCB has not been investigated. Therefore a detailed experimental study involving 24 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental shear capacities with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Such enhancements to the shear behaviour and capacity were achieved with a rivet spacing of 100 mm. Improved design rules were proposed for rivet fastened RHFCBs based on the current shear design equations in AISI S100 and the direct strength method. This paper presents the details of this experimental investigation and the results.
Resumo:
This paper presents the details of experimental and numerical studies on the web crippling behaviour of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies consisting of 28 tests were first conducted in this research to assess the web crippling behaviour and strengths of LSBs under two flange load cases (ETF and ITF). Experimental web crippling capacity results were then compared with the predictions from AS/NZS 4600 and AISI S100 design rules, which showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LSBs under ETF and ITF load cases. Hence improved equations were proposed to determine the web crippling capacities of LSBs. Finite element models of the tested LSBs were then developed, and used to determine the elastic buckling loads of LSBs under ETF and ITF load cases. New equations were proposed to determine the corresponding elastic buckling coefficients of LSBs. Finally suitable design rules were also developed under the Direct Strength Method format using the test results and buckling analysis results from finite element analyses.
Resumo:
The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange beams. Many experimental and numerical studies have been carried out in the past to investigate the shear behaviour of lipped channel beams. However, no research has been undertaken on the shear behaviour of rivet fastened RHFCBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs. In this research finite element models of rivet fastened RHFCBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. This paper presents the details of the finite element models of rivet fastened RHFCBs and the results. Both finite element analysis and experimental results showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Appropriate improvements have been proposed for the design rules of shear strength of rivet fastened RHFCBs within the Direct Strength Method format.
Resumo:
This paper presents an experimental investigation on the lateral impact performance of axially loaded concrete-filled double-skin tube (CFDST) columns. These columns have desirable structural and constructional properties and have been used as columns in building, legs of off shore platforms and as bridge piers. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, an experimental method employing an innovative instrumented horizontal impact testing system (HITS) was developed to apply lateral impact loads whilst the column maintained a static axial pre-loading to examine the failure mechanism and key response parameters of the column. These included the time histories of impact force, reaction forces, global lateral deflection and permanent local buckling profile. Eight full scale columns were tested for key parameters including the axial load level and impact location. Based on the test data, the failure mode, peak impact force, impact duration, peak reaction forces, reaction force duration, column maximum and residual global deflections and column local buckling length, depth and width under varying conditions are analysed and discussed. It is evident that the innovative HITS can successfully test structural columns under the combination of axial pre-loading and impact loading. The findings on the lateral impact response of the CFDST columns can serve as a benchmark reference for their future analysis and design.
Resumo:
Concrete-filled double skin tube (CFDST) is a creative innovation of steel-concrete-steel composite construction, formed by two concentric steel tubes separated by a concrete filler. Over the recent years, this column form has been widely used as a new sustainable alternative to existing structural bridge piers and building columns. Since they could be vulnerable to impact from passing vessels or vehicles, it is necessary to understand their behaviour under lateral impact loads. With this in mind, physical tests on full scale columns were performed using an innovative horizontal impact testing system to obtain the failure modes, the time history of the impact force, reaction forces and global lateral deflection as well as permanent local buckling profile of the columns. The experimental testing was complemented and supplemented by developing and using an advanced finite element analysis model. The model was validated by comparing the numerical results against experimental data. The findings of this study will serve as a benchmark reference for future analysis and design of CFDST columns.
Resumo:
In this work, we explore simultaneous geometry design and material selection for statically determinate trusses by posing it as a continuous optimization problem. The underlying principles of our approach are structural optimization and Ashby’s procedure for material selection from a database. For simplicity and ease of initial implementation, only static loads are considered in this work with the intent of maximum stiffness, minimum weight/cost, and safety against failure. Safety of tensile and compression members in the truss is treated differently to prevent yield and buckling failures, respectively. Geometry variables such as lengths and orientations of members are taken to be the design variables in an assumed layout. Areas of cross-section of the members are determined to satisfy the failure constraints in each member. Along the lines of Ashby’s material indices, a new design index is derived for trusses. The design index helps in choosing the most suitable material for any geometry of the truss. Using the design index, both the design space and the material database are searched simultaneously using gradient-based optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous, although the material selection from a database is an inherently discrete problem. A few illustrative examples are included. It is observed that the method is capable of determining the optimal topology in addition to optimal geometry when the assumed layout contains more links than are necessary for optimality.
Resumo:
Stability analysis is carried out considering free lateral vibrations of simply supported composite skew plates that are subjected to both direct and shear in-plane forces. An oblique stress component representation is used, consistent with the skew-geometry of the plate. A double series, expressed in Chebyshev polynomials, is used here as the assumed deflection surface and Ritz method of solution is employed. Numerical results for different combinations of side ratios, skew angle, and in-plane loadings that act individually or in combination are obtained. In this method, the in-plane load parameter is varied until the fundamental frequency goes to zero. The value of the in-plane load then corresponds to a critical buckling load. Plots of frequency parameter versus in-plane loading are given for a few typical cases. Details of crossings and quasi degeneracies of these curves are presented.
Resumo:
Test results of 24 reinforced concrete wall panels in two-way action (i.e., supported on all the four sides) and subjected to in-plane vertical load are presented. The load is applied at an eccentricity to represent possible accidental eccentricity that occurs in practice due to constructional imperfections. Influences of aspect ratio, thinness ratio, slendemess ratio, vertical steel, and horizontal steel on the ultimate load are studied. Two equations are proposed to predict the ultimate load carried by the panels. The first equation is empirical and is arrived at from trial and error fitting with test data. The second equation is semi-empirical and is developed from a modification of the buckling strength of thin rectangular plates. Both the equations are formulated so as to give a safe prediction of a large portion of ultimate strength test results. Also, ultimate load cracking load and lateral deflections of identical panels in two-way action (all four sides supported) and oneway action (top and bottom sides only supported) are compared.