862 resultados para bubble nucleation
Resumo:
A Cellular-Automaton Finite-Volume-Method (CAFVM) algorithm has been developed, coupling with macroscopic model for heat transfer calculation and microscopic models for nucleation and growth. The solution equations have been solved to determine the time-dependent constitutional undercooling and interface retardation during solidification. The constitutional undercooling is then coupled into the CAFVM algorithm to investigate both the effects of thermal and constitutional undercooling on columnar growth and crystal selection in the columnar zone, and formation of equiaxed crystals in the bulk liquid. The model cannot only simulate microstructures of alloys but also investigates nucleation mechanisms and growth kinetics of alloys solidified with various solute concentrations and solidification morphologies.
Resumo:
The combined approach of the molecular-kinetic and hydrodynamic theories for description of the motion of three-phase gas-liquid-solid contact lines has been examined using the Wilhelmy plate method. The whole dynamic meniscus has been divided into molecular, hydrodynamic, and static-like regions. The Young-Laplace equation and the molecular-kinetic and hydrodynamic dewetting theories have been applied to describe the meniscus profiles and contact angle. The dissipative forces accompanying the dynamic dewetting have also been investigated. The experiments with a Wilhelmy plate made from an acrylic polymer sheet were carried out using a computerized apparatus for contact angle analysis (OCA 20, DataPhysics, Germany). The extrapolated dynamic contact angle versus velocity of the three-phase contact line for Milli-Q water and 5 x 10(-4) M SDBS solution was experimentally obtained and compared with the combined MHD models with low and moderate Reynolds numbers. The models predict similar results for the extrapolated contact angle. SDBS decreases the equilibrium contact angle and increases the molecular jumping length but does not affect the molecular frequency significantly. The hydrodynamic deformation of the meniscus, viscous dissipation, and friction were also influenced by the SDBS surfactant. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Recent increasing applications for cast Al-Si alloys are particularly driven by the need for lightweighting components in the automotive sector. To improve mechanical properties, elements such as strontium, sodium and antimony can be added to modify the eutectic silicon from coarse and plate-like to fine and fibrous morphology. It is only recently being noticed that the morphological transformation resulting from eutectic modification is also accompanied by other, equally significant, but often unexpected changes. These changes can include a 10-fold increase in the eutectic grain size, redistribution of low-melting point phases and porosity as well as surface finish, consequently leading to variations in casting quality. This paper shows the state-of-the-art in understanding the mechanism of eutectic nucleation and growth in Al-Si alloys, inspecting samples, both quenched and uninterrupted, on the macro, micro and nano-scale. It shows that significant variations in eutectic nucleation and growth dynamics occur in AI-Si alloys as a function of the type and amount of modifier elements added. The key role of AIP particles in nucleating silicon is demonstrated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A comprehensive probabilistic model for simulating dendrite morphology and investigating dendritic growth kinetics during solidification has been developed, based on a modified Cellular Automaton (mCA) for microscopic modeling of nucleation, growth of crystals and solute diffusion. The mCA model numerically calculated solute redistribution both in the solid and liquid phases, the curvature of dendrite tips and the growth anisotropy. This modeling takes account of thermal, curvature and solute diffusion effects. Therefore, it can simulate microstructure formation both on the scale of the dendrite tip length. This model was then applied for simulating dendritic solidification of an Al-7%Si alloy. Both directional and equiaxed dendritic growth has been performed to investigate the growth anisotropy and cooling rate on dendrite morphology. Furthermore, the competitive growth and selection of dendritic crystals have also investigated.
Resumo:
An experimental white cast iron with the unprecedented fracture tough ness of 40 MPa m(1/2) is currently being studied to determine the mechanisms of toughening. This paper reports the investigation of the role of strain-induced martensitic (SIM) transformation. The dendritic microconstituent in the toughened alloy consists primarily of retained austenite, with precipitated M(7)C(3) carbides and some martensite. Refrigeration experiments and differential scanning calorimetry (DSC) were used to demonstrate, firstly, that this retained austenite has an ''effective'' sub-ambient M(S) temperature and, secondly, that SIM transformation can occur at ambient temperatures. Comparison between room temperature and elevated temperature K-Ic tests showed that the observed SIM produces a transformation toughening response in the alloy, contributing to, but not fully accounting for, its high tough ness. SIM as a mechanism for transformation toughening has not previously been reported for white cast irons. Microhardness traverses on crack paths and X-ray diffraction (XRD) on fracture surfaces confirmed the interpretation of the K-Ic experiments. Further DSC and quantitative XRD showed that, as heat-treatment temperature is varied, there is a correlation between fracture toughness and the volume fraction of unstable retained austenite.
Resumo:
A new wavelet-based method for solving population balance equations with simultaneous nucleation, growth and agglomeration is proposed, which uses wavelets to express the functions. The technique is very general, powerful and overcomes the crucial problems of numerical diffusion and stability that often characterize previous techniques in this area. It is also applicable to an arbitrary grid to control resolution and computational efficiency. The proposed technique has been tested for pure agglomeration, simultaneous nucleation and growth, and simultaneous growth and agglomeration. In all cases, the predicted and analytical particle size distributions are in excellent agreement. The presence of moving sharp fronts can be addressed without the prior investigation of the characteristics of the processes. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
The effect of eutectic modification by strontium on nucleation and growth of the eutectic in hypoeutectic Al-Si foundry alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from three hypoeutectic AlSi base alloys with 5, 7 and 10 mass%Si and with different strontium contents up to 740 ppm for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites? the growth mode of the eutectic could be determined. The mapping results indicate that the eutectic grew from the primary phase in unmodified alloys. When the eutectic was modified by strontium, eutectic grains nucleated separately from the primary dendrites. However, in alloys with high strontium levels, the eutectic again grew from the primary phase. These observed effects of strontium additions on the eutectic solidification mode are independent of silicon content in the range between 5 and 10 mass%Si.
Resumo:
The effect of strontium (Sr), antimony (Sb) and phosphorus (P) on nucleation and growth mode of the eutectic in hypoeutectic Al-10 mass%Si alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from a hypoeutectic Al-10 mass%Si base alloy, adding different levels of strontium, antimony and phosphorus for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites, the solidification mode of the eutectic could be determined. The results of these studies show that the eutectic nucleation mode, and subsequent growth mode, is strongly dependent on additive elements. The EBSD mapping results indicate that the eutectic grew from the primary phase in unmodified and phosphorus-containing alloys. When the eutectic was modified by strontium or antimony, eutectic grains nucleated and grew separately from the primary dendrites.
Resumo:
The influence of sodium (Na) on nucleation and growth of the Al-Si eutectic in a commercial hypoeutectic Al-Si-Cu-Mg foundry alloy has been investigated. The microstructural evolution during eutectic solidification was studied by a quenching technique. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites by EBSD, the eutectic solidification mode could be determined. The results show that the eutectic solidification starts near the mould wall and evolves with front growth opposite the thermal gradient on a macro-scale, and on a micro-scale with independent heterogeneous nucleation of eutectic grains in interdendritic spaces. Na-modified alloys therefore behave significantly differently from those modified by other elemental additions.
Resumo:
Nucleation and growth of the eutectic, in hypoeutectic Al-Si foundry alloys has been investigated by the electron backscatter diffraction (EBSD) mapping technique using a scanning electron microscope (SEM). Sample preparation procedures for optimizing mapping have been developed. To obtain a sufficiently smooth surface from a cast Al-Si eutectic microstructure for EBSD mapping, an appropriate preparation technique by ion milling was developed and applied instead of conventional electropolishing. By comparing the orientation of the aluminum in the eutectic to that of the surrounding primary aluminum dendrites, the growth mechanism of the eutectic can be determined. Two different results were found, in isolation or sometimes together, but distinct for different strontium contents: (1) crystallographic orientations of aluminum in eutectic and surrounding primary dendrites are identical, and (2) wide variation in orientations of the aluminum in the eutectic. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
This study investigates binder distribution in wet granulation and focuses on the nucleation zone, which is the area where the liquid binder and powder surface come into contact and form the initial nuclei. An equipment independent parameter, dimensionless spray flux Psi (a), is defined to characterise the most important process parameters in the nucleation process: solution flowrate, powder flux, and binder drop size. Ex-granulator experiments are used to study the relationship between dimensionless spray flux, process variables and the coverage of binder fluid on the powder surface. Lactose monohydrate powder on a variable speed riffler passed under a flat spray once only. Water and 7% HPC solution at two spray pressures were used as binders. Experiments with red dye and image analysis demonstrate that changes in dimensionless spray flux correlate with a measurable difference in powder surface coverage. Nucleation experiments show that spray flux controls the size and shape of the nuclei size distribution. At low Psi (a), the system operates in the drop controlled regime, where one drop forms one nucleus and the nuclei size distribution is narrow. At higher Psi (a), the powder surface cakes creating a broader size distribution. For controlled nucleation with the narrowest possible size distribution, it is recommended that the dimensionless spray flux be less than 0.1 to be in the drop-controlled regime. (C) 2001 Elsevier Science S.A. All rights reserved.
Resumo:
An attempt was made to quantify the boundaries and validate the granule growth regime map for liquid-bound granules recently proposed by Iveson and Litster (AlChE J. 44 (1998) 1510). This regime map postulates that the type of granule growth behaviour is a function of only two dimensionless groups: the amount of granule deformation during collision (characterised by a Stokes deformation number, St(def)) and the maximum granule pore saturation, s(max). The results of experiments performed with a range of materials (glass ballotini, iron ore fines, copper chalcopyrite powder and a sodium sulphate and cellulose mixture) using both drum and high shear mixer granulators were examined. The drum granulation results gave good agreement with the proposed regime map. The boundary between crumb and steady growth occurs at St(def) of order 0.1 and the boundary between steady and induction growth occurs at St(def) of order 0.001. The nucleation only boundary occurs at pore saturations that increase from 70% to 80% with decreasing St(def). However, the high shear mixer results all had St(def) numbers which were too large. This is most likely to be because the chopper tip-speed is an over-estimate of the average impact velocity granules experience and possibly also due to the dynamic yield strength of the materials being significantly greater than the yield strengths measured at low strain rates. Hence, the map is only a useful tool for comparing the granulation behaviour of different materials in the same device. Until we have a better understanding of the flow patterns and impact velocities in granulators, it cannot be used to compare different types of equipment. Theoretical considerations also revealed that several of the regime boundaries are also functions of additional parameters not explicitly contained on the map, such as binder viscosity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The personal computer revolution has resulted in the widespread availability of low-cost image analysis hardware. At the same time, new graphic file formats have made it possible to handle and display images at resolutions beyond the capability of the human eye. Consequently, there has been a significant research effort in recent years aimed at making use of these hardware and software technologies for flotation plant monitoring. Computer-based vision technology is now moving out of the research laboratory and into the plant to become a useful means of monitoring and controlling flotation performance at the cell level. This paper discusses the metallurgical parameters that influence surface froth appearance and examines the progress that has been made in image analysis of flotation froths. The texture spectrum and pixel tracing techniques developed at the Julius Kruttschnitt Mineral Research Centre are described in detail. The commercial implementation, JKFrothCam, is one of a number of froth image analysis systems now reaching maturity. In plants where it is installed, JKFrothCam has shown a number of performance benefits. Flotation runs more consistently, meeting product specifications while maintaining high recoveries. The system has also shown secondary benefits in that reagent costs have been significantly reduced as a result of improved flotation control. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Interactions between turbulent waters and atmosphere may lead to strong air-water mixing. This experimental study is focused on the flow down a staircase channel characterised by very strong flow aeration and turbulence. Interfacial aeration is characterised by strong air-water mixing extending down to the invert. The size of entrained bubbles and droplets extends over several orders of magnitude, and a significant number of bubble/droplet clusters was observed. Velocity and turbulence intensity measurements suggest high levels of turbulence across the entire air-water flow. The increase in turbulence levels, compared to single-phase flow situations, is proportional to the number of entrained particles. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
There is considerable anecdotal evidence from industry that poor wetting and liquid distribution can lead to broad granule size distributions in mixer granulators. Current scale-up scenarios lead to poor liquid distribution and a wider product size distribution. There are two issues to consider when scaling up: the size and nature of the spray zone and the powder flow patterns as a function of granulator scale. Short, nucleation-only experiments in a 25L PMA Fielder mixer using lactose powder with water and HPC solutions demonstrated the existence of different nucleation regimes depending on the spray flux Psi(a)-from drop-controlled nucleation to caking. In the drop-controlled regime at low Psi(a) values. each drop forms a single nucleus and the nuclei distribution is controlled by the spray droplet size distribution. As Psi(a) increases, the distribution broadens rapidly as the droplets overlap and coalesce in the spray zone. The results are in excellent agreement with previous experiments and confirm that for drop-controlled nucleation. Psi(a) should be less than 0.1. Granulator flow studies showed that there are two powder flow regimes-bumping and roping. The powder flow goes through a transition from bumping to roping as impeller speed is increased. The roping regime gives good bed turn over and stable flow patterns. This regime is recommended for good liquid distribution and nucleation. Powder surface velocities as a function of impeller speed were measured using high-speed video equipment and MetaMorph image analysis software, Powder surface velocities were 0.2 to 1 ms(-1)-an order of magnitude lower than the impeller tip speed. Assuming geometrically similar granulators, impeller speed should be set to maintain constant Froude number during scale-up rather than constant tip speed to ensure operation in the roping regime. (C) 2002 Published by Elsevier Science B.V.