962 resultados para boundary integral equation method


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work in this paper concerns the study of conventional and refined heat balance integral methods for a number of phase change problems. These include standard test problems, both with one and two phase changes, which have exact solutions to enable us to test the accuracy of the approximate solutions. We also consider situations where no analytical solution is available and compare these to numerical solutions. It is popular to use a quadratic profile as an approximation of the temperature, but we show that a cubic profile, seldom considered in the literature, is far more accurate in most circumstances. In addition, the refined integral method can give greater improvement still and we develop a variation on this method which turns out to be optimal in some cases. We assess which integral method is better for various problems, showing that it is largely dependent on the specified boundary conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies the rate of convergence of an appropriatediscretization scheme of the solution of the Mc Kean-Vlasovequation introduced by Bossy and Talay. More specifically,we consider approximations of the distribution and of thedensity of the solution of the stochastic differentialequation associated to the Mc Kean - Vlasov equation. Thescheme adopted here is a mixed one: Euler/weakly interactingparticle system. If $n$ is the number of weakly interactingparticles and $h$ is the uniform step in the timediscretization, we prove that the rate of convergence of thedistribution functions of the approximating sequence in the $L^1(\Omega\times \Bbb R)$ norm and in the sup norm is of theorder of $\frac 1{\sqrt n} + h $, while for the densities is ofthe order $ h +\frac 1 {\sqrt {nh}}$. This result is obtainedby carefully employing techniques of Malliavin Calculus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Fortran77 program, SSPBE, designed to solve the spherically symmetric Poisson-Boltzmann equation using cell model for ionic macromolecular aggregates or macroions is presented. The program includes an adsorption model for ions at the aggregate surface. The working algorithm solves the Poisson-Boltzmann equation in the integral representation using the Picard iteration method. Input parameters are introduced via an ASCII file, sspbe.txt. Output files yield the radial distances versus mean field potentials and average molar ion concentrations, the molar concentration of ions at the cell boundary, the self-consistent degree of ion adsorption from the surface and other related data. Ion binding to ionic, zwitterionic and reverse micelles are presented as representative examples of the applications of the SSPBE program.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the general exponential screened coulomb potential of the form V(r) = (- a / r){1+ (1+ b )e-2b } has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of Nikiforov-Uvarov (NU) method which is related to the solutions in terms of Jacobi polynomials. The bounded state eigenvalues are calculated numerically for the 1s state of N2 CO and NO

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the lack of information concerning maximum rainfall equations for most locations in Mato Grosso do Sul State, the alternative for carrying out hydraulic work projects has been information from meteorological stations closest to the location in which the project is carried out. Alternative methods, such as 24 hours rain disaggregation method from rainfall data due to greater availability of stations and longer observations can work. Based on this approach, the objective of this study was to estimate maximum rainfall equations for Mato Grosso do Sul State by adjusting the 24 hours rain disaggregation method, depending on data obtained from rain gauge stations from Dourado and Campo Grande. For this purpose, data consisting of 105 rainfall stations were used, which are available in the ANA (Water Resources Management National Agency) database. Based on the results we concluded: the intense rainfall equations obtained by pluviogram analysis showed determination coefficient above 99%; and the performance of 24 hours rain disaggregation method was classified as excellent, based on relative average error WILMOTT concordance index (1982).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Zubarev equation of motion method has been applied to an anharmonic crystal of O( ,,4). All possible decoupling schemes have been interpreted in order to determine finite temperature expressions for the one phonon Green's function (and self energy) to 0()\4) for a crystal in which every atom is on a site of inversion symmetry. In order to provide a check of these results, the Helmholtz free energy expressions derived from the self energy expressions, have been shown to agree in the high temperature limit with the results obtained from the diagrammatic method. Expressions for the correlation functions that are related to the mean square displacement have been derived to 0(1\4) in the high temperature limit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We deal with the numerical solution of heat conduction problems featuring steep gradients. In order to solve the associated partial differential equation a finite volume technique is used and unstructured grids are employed. A discrete maximum principle for triangulations of a Delaunay type is developed. To capture thin boundary layers incorporating steep gradients an anisotropic mesh adaptation technique is implemented. Computational tests are performed for an academic problem where the exact solution is known as well as for a real world problem of a computer simulation of the thermoregulation of premature infants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a new scheme to solve the time dependent Dirac-Fock-Slater equation (TDDFS) for heavy many electron ion-atom collision systems. Up to now time independent self consistent molecular orbitals have been used to expand the time dependent wavefunction and rather complicated potential coupling matrix elements have been neglected. Our idea is to minimize the potential coupling by using the time dependent electronic density to generate molecular basis functions. We present the first results for 16 MeV S{^16+} on Ar.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the imposition of Dirichlet boundary conditions in the finite element modelling of moving boundary problems in one and two dimensions for which the total mass is prescribed. A modification of the standard linear finite element test space allows the boundary conditions to be imposed strongly whilst simultaneously conserving a discrete mass. The validity of the technique is assessed for a specific moving mesh finite element method, although the approach is more general. Numerical comparisons are carried out for mass-conserving solutions of the porous medium equation with Dirichlet boundary conditions and for a moving boundary problem with a source term and time-varying mass.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two fundamental perspectives on the dynamics of midlatitude weather systems are provided by potential vorticity (PV) and the omega equation. The aim of this paper is to investigate the link between the two perspectives, which has so far received very little attention in the meteorological literature. It also aims to give a quantitative basis for discussion of quasi-geostrophic vertical motion in terms of components associated with system movement, maintaining a constant thermal structure, and with the development of that structure. The former links with the isentropic relative-flow analysis technique. Viewed in a moving frame of reference, the measured development of a system depends on the velocity of that frame of reference. The requirement that the development should be a minimum provides a quantitative method for determining the optimum system velocity. The component of vertical velocity associated with development is shown to satisfy an omega equation with forcing determined from the relative advection of interior PV and boundary temperature. The analysis carries through in the presence of diabatic heating provided the omega equation forcing is based on the interior PV and boundary thermal tendencies, including the heating effect. The analysis is shown to be possible also at the level of the semi-geostrophic approximation. The analysis technique is applied to a number of idealized problems that can be considered to be building blocks for midlatitude synoptic-scale dynamics. They focus on the influences of interior PV, boundary temperature, an interior boundary, baroclinic instability associated with two boundaries, and also diabatic heating. In each case, insights yielded by the new perspective are sought into the dynamical behaviour, especially that related to vertical motion. Copyright © 2003 Royal Meteorological Society

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider boundary value problems for the elliptic sine-Gordon equation posed in the half plane y > 0. This problem was considered in Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) using the classical inverse scattering transform approach. Given the limitations of this approach, the results obtained rely on a nonlinear constraint on the spectral data derived heuristically by analogy with the linearized case. We revisit the analysis of such problems using a recent generalization of the inverse scattering transform known as the Fokas method, and show that the nonlinear constraint of Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) is a consequence of the so-called global relation. We also show that this relation implies a stronger constraint on the spectral data, and in particular that no choice of boundary conditions can be associated with a decaying (possibly mod 2π) solution analogous to the pure soliton solutions of the usual, time-dependent sine-Gordon equation. We also briefly indicate how, in contrast to the evolutionary case, the elliptic sine-Gordon equation posed in the half plane does not admit linearisable boundary conditions.