848 resultados para blended learning spaces


Relevância:

40.00% 40.00%

Publicador:

Resumo:

As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The complexity and multifaceted nature of sustainable lifelong learning can be effectively addressed by a broad network of providers working co-operatively and collaboratively. Such a network involving the third, public and private sector bodies must realise the full potential of accredited flexible and blended formal learning, contextual opportunities offered by enablers of informal and non formal learning and the affordances derived from the various loose and open spaces that can make social learning effective. Such a conception informs the new Lifelong Learning Network Consortium on Sustainable Communities, Urban Regeneration and Environmental Technologies established and led by the Lifelong Learning Centre at Aston University. This paper offers a radical, reflective and political evaluation of its first year in development arguing that networked learning of this type could prefigure a new model for lifelong learning and sustainable education that renders the city itself a creative medium for transformative learning and sustainability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virtual worlds are relatively recent developments, and so it is tempting to believe that they need to be understood through newly developed theories and philosophies. However, humans have long thought about the nature of reality and what it means to be “real.” This paper examines the three persistent philosophical concepts of Metaxis, Liminality and Space that have evolved across more than 2000 years of meditation, contemplation and reflection. Our particular focus here is on the nature of the interface between the virtual and the physical: at the interstices, and how the nature of transactions and transitions across those interfaces may impact upon learning. This may, at first, appear to be an esoteric pursuit, but we ground our arguments in primary and secondary data from research studies in higher education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bologne came to globalize education in higher education, creating a unified architecture that potentiates higher education and enhances the continued interconnection of the spaces of education policy in higher education in the world, in particular in Europe. The aim of this work consists in the presentation of an identification model and skills’ classification and learning outcomes, based on the official documents of the course units (syllabus and assessment components) of a course of Higher Education. We are aware that the adoption of this model by different institutions, will contribute to interoperability learning outcomes, thus enhancing the mobility of teachers and students in the EHEA (European Higher Education Area) and third countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquest projecte ha servit per (1) establir un treball col·laboratiu entre el professorat que habitualment impartim les assignatures de Didàctica general i atenció a la diversitat i Organització del Centre Escolar; (2) dissenyar conjuntament espais del campus virtual en la plataforma moodle; (3) compartir material i experiències docents fent formació entre iguals; (4) dissenyar i desenvolupar accions didàctiques innovadores per afavorir l'aprenentatge significatiu; (5) prendre posició respecte a l'elaboració dels nous graus de Formació del Professorat i reelaborar els plans docents nous. Les noves titulacions, el disseny per competències, l’EEES ens ha obligat a fer una reflexió sobre la nostra docència, l’educació superior i la formació dels futurs mestres. Aquest projecte ha recolzat la tasca habitual, donant-li una orientació concreta, en ell hem estat implicat un grup important de professors i professores així com d’alumnes perquè s’ha implementat en els 13 grups d’alumnes de Formació del Professorat i en dues assignatures troncals i obligatòries. Per fer seguiment del treball hem analitzat els productes d’aprenentatges, els espais moodle, així mateix hem anat recollint les valoracions dels estudiants fent qüestionaris i grups de discussió. Tot i que el treball desenvolupat es considera positiu, hi ha aspectes per millorar que també es destaquen en l’informe: dificultats per manca de temps, poc reconeixement, necessitat de cohesionar i estabilitzar equips docents, necessitat d’incorporar tècniques especialistes en el disseny d’entorns virtuals d’aprenentatge en els equips docents, entre d’altres. D’altra banda amb l’elaboració dels nous plans d’estudis les assignatures amb les que hem treballat han perdut l’entitat i el pes que tenien per tenir-ne una altra i en des de 2007 fins a ara hem anat perdent professorat estable i incorporant associats. Fets que fan necessari seguir avançant d’altres maneres, per tant finalitzem un projecte, però es necessari replantejar-se un altre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distance and blended collaborative learning settings are usually characterized by different social structures defined in terms of groups' number, dimension, and composition; these structures are variable and can change within the same activity. This variability poses additional complexity to instructional designers, when they are trying to develop successful experiences from existing designs. This complexity is greatly associated with the fact that learning designs do not render explicit how social structures influenced the decisions of the original designer, and thus whether the social structures of the new setting could preclude the effectiveness of the reused design. This article proposes the usage of new representations (social structure representations, SSRs) able to support unskilled designers in reusing existing learning designs, through the explicit characterization of the social structures and constraints embedded either by the original designers or the reusing teachers, according to well-known principles of good collaborative learning practice. The article also describes an evaluation process that involved university professors, as well as the main findings derived from it. This process supported the initial assumptions about the effectiveness of SSRs, with significant evidence from both qualitative and qualitative data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research deals with the review of the analysis and modeling of Swiss franc interest rate curves (IRC) by using unsupervised (SOM, Gaussian Mixtures) and supervised machine (MLP) learning algorithms. IRC are considered as objects embedded into different feature spaces: maturities; maturity-date, parameters of Nelson-Siegel model (NSM). Analysis of NSM parameters and their temporal and clustering structures helps to understand the relevance of model and its potential use for the forecasting. Mapping of IRC in a maturity-date feature space is presented and analyzed for the visualization and forecasting purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual learning environments are online spaces where learners interact with other learners, teachers, resources and the environment in itself. Although technology is meant to enhance the learning process, there are important issues regarding pedagogical and organizational aspects that must be addressed. In this paper we review the barriers detected in a virtual university which exclusively uses Internet as the main channel of communication, with no face-to-face requirements exceptthose related to final evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supplying teachers with nothing else but ICT, or in the best case, with some knowledge of the tool, has proved to be insufficient for the effectiveness and improvement of the education system. Having as a starting point the personal process of learning, this PhD thesis intends to explore the Massive Open Online Courses (MOOCs) that are offered to teachers by the educaLAB, a platform created ad hoc by INTEF (InstitutoNacionalde TecnologíasEducativasy de Formacióndel Profesorado). My work intends to explore the impact these spaces have on our learning process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research explored the events that engaged graduate students in transformative learning within a graduate program in education. This context was chosen because one objective of a graduate program is to facilitate critical thinking and transformative learning. The question ofhow adult learners perceive and experience learning steered the direction ofthis study. However, the purpose ofthis research was to study critical incidents that led to profound cognitive and affective changes as perceived by the graduate students. Specifically, the questions to be answered were what critical incidents happened to graduate students while in the Master ofEducation program, how were the incidents experienced, and what transformation resulted? The research design evolved over the course of a year and was highly influenced by previous empirical studies and criticisms oftransformative learning theory. The overall design was qualitative and phenomenological. A critical and interpretive approach was made to empirical data collected through a critical incident questionnaire and in-depth interviews. Inductive analysis allowed theory to be built from the data by making comparisons. New questions emerged and attention was given to social context, the passage oftime, and sequence ofevents in order to give meaning and translation ofthe participants' experiences and to build the interpretive narratives. Deductive analysis was also used on the data and a blending ofthe two forms of analysis; this resulted in the development ofa foundational model for transformative learning to be built.The data revealed critical incidents outside ofthe graduate school program that occurred in childhood or adult life prior to graduate school. Since context of individuals' lives had been an important critique of past transformative learning models and studies, this research expanded the original boundaries of this study beyond graduate school to incorporate incidents that occurred outside of graduate school. Critical incidents were categorized into time-related, people-related, and circumstancerelated themes. It was clear that participants were influenced and molded by the stage oftheir life, personal experiences, familial and cultural conditioning, and even historic events. The model developed in this document fiom an overview ofthe fmdings identifies a four-stage process of life difficulty, disintegration, reintegration, and completion that all participants' followed. The blended analysis was revealed from the description ofhow the incidents were experienced by the participants. The final categories were what were the feelings, what was happening, and what was the enviromnent? The resulting transformation was initially only going to consider cognitive and affective changes, however, it was apparent that contextual changes also occurred for all participants, so this category was also included. The model was described with the construction metaphor of a building "foimdation" to illustrate the variety of conditions that are necessary for transformative learning to occur. Since this was an exploratory study, no prior models or processes were used in data analysis, however, it appeared that the model developed from this study incorporated existing models and provided a more encompassing life picture oftransformative learning.