915 resultados para bleaching of TiO2
Resumo:
This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66ºC). The LED unit produced the lowest temperature increase (0.29±0.13ºC); but there was no significant difference between LED unit and LED-laser system (0.35±0.15ºC) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64ºC), and LED-laser system the lowest (0.33±0.12ºC); however, there was no difference between LED-laser system and LED unit (0.44±0.11ºC). LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED-laser system. The tested light-curing units provided increases in the pulp chamber temperature that were compatible with pulpal health.
Resumo:
This in vitro study aimed to analyze the effect of different parameters of phototherapy with low intensity laser on the viability of human dental pulp fibroblasts under the effect of substances released by bleaching gel. Cells were seeded into 96 wells plates (1 x 10³ cells/well) and placed in contact with culture medium conditioned by a 35 % hydrogen peroxide bleaching gel for 40 minutes, simulating the clinical condition of the in-office bleaching treatment. Cells cultured in ideal growth conditions served as positive control group (PC), and the cells grown in conditioned medium and non-irradiated served as negative control group (NC). Cells grown in conditioned medium were submitted to a single irradiation with a diode laser (40 mW, 0.04 cm²) emitting at visible red (660 nm; RL) or near infrared (780 nm; NIR) using punctual technique, in contact mode and energy densities of 4, 6 or 10 J/cm². The cell viability was analyzed through the MTT reduction assay immediately and 24 hours after the irradiation. The data was compared by ANOVA followed by the Tukey's test (p < 0.05). The cell viability increased significantly in 24 hours within each group. The PC presented cell viability significantly higher than NC in both experimental times. Only the NIR/10 J/cm² group presented cell viability similar to that of PC in 24 hours. The phototherapy with low intensity laser in defined parameters is able to compensate the cytotoxic effects of substances released by 35 % hydrogen peroxide bleaching gel.
Resumo:
Background: The use of laser irradiation for dental surface treatment may increase tooth-composite bond strength. Its use on bleached teeth may decrease the waiting time between bleaching and restorative procedures. Objective: This study aimed to evaluate the bond strength between a composite resin and bovine enamel bleached with 35% hydrogen peroxide and etched with Er:YAG laser. Materials and Methods: Thirty bovine teeth were randomly divided into six groups (n = 5): G1, unbleached and restored 24 h after storage in artificial saliva, etching with 35% phosphoric acid (PA) (control); G2, unbleached and restored 24 h after storage in artificial saliva, etching with Er:YAG laser and 35% PA; G3, bleached and restored immediately afterward, etching with 35% PA; G4, bleached and restored 24 h after bleaching, etching with 35% PA; G5, bleached and restored immediately afterward, etching with Er:YAG and 35% PA laser; G6, bleached and restored 24 h after bleaching, etching with Er:YAG laser and 35% PA. Bond strength was quantitatively evaluated by microtensile test (1.0 mm/min). Data were submitted to statistical analysis using ANOVA and Tukey tests (alpha - 0.05). Results: Bond strength values (MPa) were G1, 26.17 +/- 4.44; G2, 28.87 +/- 3.94; G3, 17.25 +/- 4.58; G4, 21.93 +/- 5.02; G5, 16.69 +/- 2.31; and G6, 29.06 +/- 8.31. There was no statistically significant difference among groups G1, G2, and G6 (p - 0.119), which presented higher bond strength than group G4, followed by groups G3 and G5. Conclusion: Er:YAG irradiation of bleached surfaces may favor bonding procedures when performed 24 h after bleaching.
Resumo:
Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.
Resumo:
Modulated chlorophyll fluorescence techniques were used to examine the effects of cyanide (NaCN) from cyanide fishing on photosynthesis of the symbiotic algae (zooxanthellae) located within the tissues of the zooxanthellate hard coral Plesiastrea versipora. Incubating corals for 3 h in a cyanide concentration of >10(-5) M NaCN under a saturating light intensity (photosynthetically active radiation [PAR] intensity of 250 mu mol quanta m(-2) s(-1)) caused a long-term decrease in the ratio of variable to maximal fluorescence (dark-adapted F-v/F-m). The effect of cyanide on dark-adapted F-v/F-m was Light dependent; thus F-v/F-m only decreased in corals exposed to 10(-4) M NaCN for 3 h under PAR of 250 mu mol quanta m(-2) s(-1). In corals where dark-adapted F-v/F-m was significantly lowered by cyanide exposure, we observed significant loss of zooxanthellae from the tissues. causing the corals to discolour (bleach). To further examine the light-dependent effect of cyanide and its relation to loss of zooxanthellae, corals were exposed to 10-4 M NaCN or seawater only (control), either in darkness or under 250 mu mol quanta m(-2) s(-1). ill significant decrease in dark-adapted F-v/F-m and loss of zooxanthellae only occurred in corals exposed to cyanide in the light. These results suggest cyanide causes the dissociation of the symbiosis (bleaching) by affecting photosynthesis of the zooxanthellae. Quenching analysis using the saturation-pulse technique revealed the development of high levels of non-photochemical quenching in cyanide-exposed coral. This result is consistent with the known property of cyanide as an inhibitor of the dark reactions of the Calvin cycle, specifically as an inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Therefore, chronic photoinhibition and an impairment of photosynthesis of zooxanthellae provides an important 'signal' to examine the environmental effects of cyanide fishing during controlled releases in situ.
Resumo:
Sea temperatures in many tropical regions have increased by almost 1 degrees C over the past 100 years, and are currently increasing at similar to 1-2 degrees C per century. Coral bleaching occurs when the thermal tolerance of corals and their photosynthetic symbionts (zooxanthellae) is exceeded. Mass coral bleaching has occurred in association with episodes of elevated sea temperatures over the past 20 years and involves the loss of the zooxanthellae following chronic photoinhibition. Mass bleaching has resulted in significant losses of live coral in many parts of the world. This paper considers the biochemical, physiological and ecological perspectives of coral bleaching. It also uses the outputs of four runs from three models of global climate change which simulate changes in sea temperature and hence how the frequency and intensity of bleaching events will change over the next 100 years. The results suggest that the thermal tolerances of reef-building corals are likely to be exceeded every year within the next few decades. Events as severe as the 1998 event, the worst on record, are likely to become commonplace within 20 years. Most information suggests that the capacity for acclimation by corals has already been exceeded, and that adaptation will be too slow to avert a decline in the quality of the world's reefs. The rapidity of the changes that are predicted indicates a major problem for tropical marine ecosystems and suggests that unrestrained warming cannot occur without the loss and degradation of coral reefs on a global scale.
Resumo:
Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.
Resumo:
Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 A degrees C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 A degrees C and pH 6.5 for A. terricola, and 65 A degrees C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 A degrees C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t (50) of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4-3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and beta-xylosidase were detected which might act synergistically with xylanase.
Resumo:
Objectives. The objectives of this study were to evaluate the transdentinal cytotoxicity of 10% and 16% carbamide peroxide gel (CP), as well as the ability of the antioxidant, 10% sodium ascorbate (SA), to protect the odontoblasts in culture. Study design. Human dentin discs of 0.5-mm thickness were obtained and were placed into artificial pulp chambers. MDPC-23 odontoblastlike cells were seeded on pulp surface of the discs and the following groups were established: G1-No Treatment (control), G2-10% SA/6hs, G3-10%/CP6hs, G4-10%SA/6hs+10%CP/6hs, G5-16%CP/6hs, and G6-10%SA/6hs+16%CP/6hs. The cell viability was measured by the MTT assay. Results. In groups where 16% CP was used, decreased cell viability was observed. Conversely, the application of 10% SA on the dentin discs, before the use of the CP, reduced the cytotoxic effects of these products on cells. Conclusions. The 16% CP cause a significant decrease in MDPC-23 cell viability and 10% SA was able to partially prevent the toxic effects of CP. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e70-e76)
Resumo:
This study evaluated the cytotoxic effects of a carbamide peroxide (CP) bleaching gel at different concentrations on odontoblast-like cells. Immortalized cells of the MDPC-23 cell line (30,000 cells/cm(2)) were incubated for 48 h. The bleaching gel was diluted in DMEM culture medium originating extracts with different CP concentrations. The amount (mu g/mL) of hydrogen peroxide (H(2)O(2)) released from each extract was measured by the leukocrystal violet/horseradish peroxidase enzyme assay. Five groups (n = 10) were formed according to the CP concentration in the extracts: G1-DMEM (control); G2-0.0001 % CP (0.025 mu g/mL H(2)O(2)); G3-0.001% CP (0.43 mu g/mL H(2)O(2)); G4-0.01% CP (2.21 mu g/mL H(2)O(2)); and G5-0.1 % CP (29.74 mu g/mL H(2)O(2)). MDPC-23 cells were exposed to the bleaching gel extracts for 60 min and cell metabolism was evaluated by the NITT assay. Data were analyzed statistically by one-way ANOVA and Tukey`s test (alpha = 0.05). Cell morphology was examined by scanning electron microscopy. The percentages of viable cells were as follows: G1, 100%; G2, 89.41%; G3, 82.4%; G4, 61.5%; and G5, 23.0%. G2 and G3 did not differ significantly (p > 0.05) from G1. The most severe cytotoxic effects were observed in G3 and G4. In conclusion, even at low concentrations, the CP gel extracts presented cytotoxic effects. This cytotoxicity was dose-dependent, and the 0.1% CP concentration caused the most intense cytopathic effects to the MDPC-23 cells. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9013: 907-912, 2009
Resumo:
Purpose: To evaluate the effect of a 10% carbamide peroxide-containing bleaching agent on brushing abrasion of esthetic restorative materials. Methods: Using a randomized complete block design, 150 specimens (n = 15) measuring 3 x 3 x 2 mm were fabricated into acrylic resin cylinders, using one of the restorative materials: a microfilled resin composite (At), a hybrid resin composite (Ch), a flowable resin composite (Wa), a resin-modified glass-ionomer cement (Fj) and a polyacid-modified resin composite (Dy). The bleaching agent or artificial saliva (control) was applied for 2 hours/day. After that, 120 brushing strokes were simulated automatically and the samples were kept in artificial saliva. Such bleaching/brushing cycle was performed daily for 21 days. Wear depth was assessed using profilometry. Results: Bleaching did not show significant effect on wear depth. There was a significant difference among the restorative materials. Tukey`s test showed that (Al=Ch) < (Wa) < (Fj) and that Dy was only different from Fj. (Am J Dent 2009;22:171-174).
Resumo:
Objectives: The aim of this study was to assess the fracture resistance of endodontically treated teeth submitted to bleaching with 38% hydrogen peroxide activated by light-emitting diode (LED)-laser system. Methods: Fifty maxillary incisors were endodontically treated, received a zinc phosphate barrier and were embedded in acrylic resin until cemento-enamel junction. The specimens were distributed into five groups (n = 10) according to the number of bleaching sessions: GI, no treatment (control); GII, one session; GIII, two sessions; GIV, three sessions and GV, four sessions. The whitening gel was applied to the buccal surface of the tooth and inside the pulp chamber for three times in each session, followed by LED-laser activation. Specimens were submitted to the fracture resistance test (kN) and data were submitted to the Tukey-Kramer multiple comparisons test. Results: No significant difference (p > 0.05) was found between GI (0.71 +/- 0.30) and GII (0.65 +/- 0.13), which presented the highest strength values to fracture. Groups III (0.35 +/- 0.17), IV (0.23 +/- 0.13) and V (0.38 +/- 0.15) showed lower resistance to fracture (p < 0.01) when compared to GI and GII. Conclusions: The fracture resistance of endodontically treated teeth decreased after two sessions of bleaching with 38% hydrogen peroxide activated by LED-laser system. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
To evaluate the effect of low and highly concentrated bleaching agents on microhardness and surface roughness of bovine enamel and root dentin. According to a randomized complete block design, 100 specimens of each substrate were assigned into five groups to be treated with bleaching agents containing carbamide peroxide (CP) at 10% (CP10); hydrogen peroxide (HP) at 7.5% (HP7.5) or 38% (HP38), or the combination of 18% of HP and 22% of CP (HP18/CP22), for 3 weeks. The control group was left untreated. Specimens were immersed in artificial saliva between bleaching treatments. Knoop surface microhardness (SMH) and average surface roughness (Ra) were measured at baseline and post-bleaching conditions. For enamel, there were differences between bleaching treatments for both SMH and Ra measurements (p = 0.4009 and p = 0.7650, respectively). SMH significantly increased (p < 0.0001), whereas Ra decreased (p = 0.0207) from baseline to post-bleaching condition. For root dentin, the group treated with CP10 exhibited the significantly highest SMH value differing from those groups bleached with HP18/CP22, HP7.5, which did not differ from each other. Application of HP38 resulted in intermediate SMH values. No significant differences were found for Ra (p = 0.5975). Comparing the baseline and post-bleaching conditions, a decrease was observed in SMH (p < 0.0001) and an increase in Ra (p = 0.0063). Bleaching agents with varying concentrations of CP and/or HP are capable of causing mineral loss in root dentin. Enamel does not perform in such bleaching agent-dependent fashion when one considers either hardness or surface roughness evaluations. Bleaching did not alter the enamel microhardness and surface roughness, but in root dentin, microhardness seems to be dependent on the bleaching agent used.