975 resultados para atmospheric chemistry, cloud processing, clustering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sixteen years (1994 – 2009) of ozone profiling by ozonesondes at Valentia Meteorological and Geophysical Observatory, Ireland (51.94° N, 10.23° W) along with a co-located MkIV Brewer spectrophotometer for the period 1993–2009 are analyzed. Simple and multiple linear regression methods are used to infer the recent trend, if any, in stratospheric column ozone over the station. The decadal trend from 1994 to 2010 is also calculated from the monthly mean data of Brewer and column ozone data derived from satellite observations. Both of these show a 1.5 % increase per decade during this period with an uncertainty of about ±0.25 %. Monthly mean data for March show a much stronger trend of ~ 4.8 % increase per decade for both ozonesonde and Brewer data. The ozone profile is divided between three vertical slots of 0–15 km, 15–26 km, and 26 km to the top of the atmosphere and a 11-year running average is calculated. Ozone values for the month of March only are observed to increase at each level with a maximum change of +9.2 ± 3.2 % per decade (between years 1994 and 2009) being observed in the vertical region from 15 to 26 km. In the tropospheric region from 0 to 15 km, the trend is positive but with a poor statistical significance. However, for the top level of above 26 km the trend is significantly positive at about 4 % per decade. The March integrated ozonesonde column ozone during this period is found to increase at a rate of ~6.6 % per decade compared with the Brewer and satellite positive trends of ~5 % per decade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and the carbon cycle. Isoprene is quantitatively the most important of the non-methane BVOCs (NMBVOCs), with an annual emission of about 400–600 TgC; about 90% of this is emitted by terrestrial plants. Incorporating a mechanistic treatment of isoprene emissions within land-surface schemes has recently become a focus for the modelling community, the aim being to quantify the potential magnitude of associated climate feedbacks. However, these efforts are hampered by major uncertainties about why plants emit isoprene and the relative importance of different environmental controls on isoprene emission. The availability and reliability of observations of isoprene fluxes from different types of vegetation is limited, and this also imposes constraints on model development. Nevertheless, progress is being made towards the development of mechanistic models of isoprene emission which, in conjunction with atmospheric chemistry models, will ultimately allow improved quantification of the feedbacks between the terrestrial biosphere and climate under past and future climate states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrified aerosols have been observed in the lower troposphere and in the mesosphere, but have never been detected in the stratosphere and upper troposphere. We present measurements of aerosols obtained during a balloon flight to an altitude of 24 km. The measurements were per- formed with an improved version of the Stratospheric and Tropospheric Aerosol Counter (STAC) aerosol counter dedi- cated to the search for charged aerosols. It is found that most of the aerosols are charged in the upper troposphere for altitudes below 10 km and in the stratosphere for altitudes above 20 km. Conversely, the aerosols seem to be uncharged between 10 km and 20 km. Model calculations are used to quantify the electrification of the aerosols with a stratospheric aerosol–ion model. The percentages of charged aerosols obtained with model calculations are in excellent agreement with the observations below 10 km and above 20 km. However, the model cannot reproduce the absence of electrification found in the lower stratosphere, as the processes leading to neutralisation in this altitude range are unknown. The presence of sporadic transient layers of electrified aerosol in the upper troposphere and in the stratosphere could have significant implications for sprite formation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze immediately offshore. On the day of the case study, the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. Although a colder SST would also imply a larger land–sea temperature contrast and hence a stronger onshore wind – an effect which alone would discourage blocking – the increased static stability exerts a dominant control over whether blocking takes place. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal outflow describes the horizontal advection of pollutants from the continental boundary layer across a coastline into a layer above the marine boundary layer. This process can ventilate polluted continental boundary layers and thus regulate air quality in highly populated coastal regions. This paper investigates the factors controlling coastal outflow and quantifies its importance as a ventilation mechanism. Tracers in the Met Office Unified Model (MetUM) are used to examine the magnitude and variability of coastal outflow over the eastern United States for a 4 week period during summer 2004. Over the 4 week period, ventilation of tracer from the continental boundary layer via coastal outflow occurs with the same magnitude as vertical ventilation via convection and advection. The relative importance of tracer decay rate, cross-coastal advection rate, and a parameter based on the relative continental and marine boundary layer heights, on coastal outflow is assessed by reducing the problem to a time-dependent box-model. The ratio of the advection rate and decay rate is a dimensionless parameter which determines whether tracers are long-lived or short-lived. Long- and short-lived tracers exhibit different behaviours with respect to coastal outflow. For short-lived tracers, increasing the advection rate increases the diurnally averaged magnitude of coastal outflow, but has the opposite effect for very long-lived tracers. Short-lived tracers exhibit large diurnal variability in coastal outflow but long-lived tracers do not. By combining the MetUM and box-model simulations a landwidth is determined which represents the distance inland over which emissions contribute significantly to coastal outflow. A landwidth of between 100 and 400 km is found to be representative for a tracer with a lifetime of 24 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff) from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc) from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff >12 μm, or dvc >25 μm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration. Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation,which should be taken into account by numerical weather prediction and climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region were derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which were combined to produce annual, global mean values of (−6.7±3.9)Wm−2 at the top of atmosphere (TOA) and (−12±6)Wm−2 at the surface. These results were then used to give estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for the year 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that adverse health effects of airborne particles may scale with airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m aloft. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and are indicative of loss of nanoparticles from air aged during less turbulent conditions. These results are suggestive of nanoparticle loss by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are −4.4 (−13.2 to +10.7) ng g−1 for an earlier phase of AeroCom models (phase I), and +4.1 (−13.0 to +21.4) ng g−1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g−1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates from extra-Arctic emissions, these results suggest that aerosol removal processes are a leading source of variation in model performance. The multi-model mean (full range) of Arctic radiative effect from BC in snow is 0.15 (0.07–0.25) W m−2 and 0.18 (0.06–0.28) W m−2 in phase I and phase II models, respectively. After correcting for model biases relative to observed BC concentrations in different regions of the Arctic, we obtain a multi-model mean Arctic radiative effect of 0.17 W m−2 for the combined AeroCom ensembles. Finally, there is a high correlation between modeled BC concentrations sampled over the observational sites and the Arctic as a whole, indicating that the field campaign provided a reasonable sample of the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds) and CO. When these ozone changes are used to calculate radiative forcing (RF) (and climate metrics such as the global warming potential (GWP) and global temperature-change potential (GTP)) there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane) concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia). We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field) are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3 times larger using the ensemble-mean fields than using the individual models to calculate the RF. The source of this effect is largely due to the construction of the input ozone fields, which overestimate the true ensemble spread. Hence, while the average of multi-model fields are normally appropriate for calculating mean RF, GWP and GTP, they are not a reliable method for calculating the uncertainty in these fields, and in general overestimate the uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mineralogy of airborne dust affects the impact of dust particles on direct and indirect radiative forcing, on atmospheric chemistry and on biogeochemical cycling. It is determined partly by the mineralogy of the dust-source regions and partly by size-dependent fractionation during erosion and transport. Here we present a data set that characterizes the clay and silt-sized fractions of global soil units in terms of the abundance of 12 minerals that are important for dust–climate interactions: quartz, feldspars, illite, smectite, kaolinite, chlorite, vermiculite, mica, calcite, gypsum, hematite and goethite. The basic mineralogical information is derived from the literature, and is then expanded following explicit rules, in order to characterize as many soil units as possible. We present three alternative realizations of the mineralogical maps, taking the uncertainties in the mineralogical data into account. We examine the implications of the new database for calculations of the single scattering albedo of airborne dust and thus for dust radiative forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Emissions around the M25 motorway (EM25) campaign took place over the megacity of London in the United Kingdom in June 2009 with the aim of characterising trace gas and aerosol composition and properties entering and emitted from the urban region. It featured two mobile platforms, the UK BAe-146 Facility for Airborne Atmospheric Measurements (FAAM) research aircraft and a ground-based mobile lidar van, both travelling in circuits around London, roughly following the path of the M25 motorway circling the city. We present an overview of findings from the project, which took place during typical UK summertime pollution conditions. Emission ratios of volatile organic compounds (VOCs) to acetylene and carbon monoxide emitted from the London region were consistent with measurements in and downwind of other large urban areas and indicated traffic and associated fuel evaporation were major sources. Sub-micron aerosol composition was dominated by secondary species including sulphate (24% of sub-micron mass in the London plume and 29% in the non-plume regional aerosol), nitrate (24% plume; 20% regional) and organic aerosol (29% plume; 31% regional). The primary sub-micron aerosol emissions from London were minor compared to the larger regional background, with only limited increases in aerosol mass in the urban plume compared to the background (~12% mass increase on average). Black carbon mass was the major exception and more than doubled in the urban plume, leading to a decrease in the single scattering albedo from 0.91 in the regional aerosol to 0.86 in the London plume, on average. Our observations indicated that regional aerosol plays a major role on aerosol concentrations around London, at least during typical summertime conditions, meaning future efforts to reduce PM levels in London must account for regional as well as local aerosol sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between springtime air pollution transport of ozone (O3) and carbon monoxide (CO) and mid-latitude cyclones is explored for the first time using the Monitoring Atmospheric Composition and Climate (MACC) reanalysis for the period 2003–2012. In this study, the most intense spring storms (95th percentile) are selected for two regions, the North Pacific (NP) and the North Atlantic (NA). These storms (∼60 storms over each region) often track over the major emission sources of East Asia and eastern North America. By compositing the storms, the distributions of O3 and CO within a "typical" intense storm are examined. We compare the storm-centered composite to background composites of "average conditions" created by sampling the reanalysis data of the previous year to the storm locations. Mid-latitude storms are found to redistribute concentrations of O3 and CO horizontally and vertically throughout the storm. This is clearly shown to occur through two main mechanisms: (1) vertical lifting of CO-rich and O3-poor air isentropically, from near the surface to the mid- to upper-troposphere in the region of the warm conveyor belt; and (2) descent of O3-rich and CO-poor air isentropically in the vicinity of the dry intrusion, from the stratosphere toward the mid-troposphere. This can be seen in the composite storm's life cycle as the storm intensifies, with area-averaged O3 (CO) increasing (decreasing) between 200 and 500 hPa. The influence of the storm dynamics compared to the background environment on the composition within an area around the storm center at the time of maximum intensity is as follows. Area-averaged O3 at 300 hPa is enhanced by 50 and 36% and by 11 and 7.6% at 500 hPa for the NP and NA regions, respectively. In contrast, area-averaged CO at 300 hPa decreases by 12% for NP and 5.5% for NA, and area-averaged CO at 500 hPa decreases by 2.4% for NP while there is little change over the NA region. From the mid-troposphere, O3-rich air is clearly seen to be transported toward the surface, but the downward transport of CO-poor air is not discernible due to the high levels of CO in the lower troposphere. Area-averaged O3 is slightly higher at 1000 hPa (3.5 and 1.8% for the NP and NA regions, respectively). There is an increase of CO at 1000 hPa for the NP region (3.3%) relative to the background composite and a~slight decrease in area-averaged CO for the NA region at 1000 hPa (-2.7%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980–2012 are −0.63 ± 0.13, −0.71 ± 0.15 and −0.80 ± 0.17 K decade−1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade−1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere–ocean models over the 1980–2012 period, including the continued cooling over the first decade of the 21st century.