847 resultados para asymptotically hyperbolic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a lower bound limit analysis approach for solving an axisymmetric stability problem by using the Drucker-Prager (D-P) yield cone in conjunction with finite elements and nonlinear optimization. In principal stress space, the tip of the yield cone has been smoothened by applying the hyperbolic approximation. The nonlinear optimization has been performed by employing an interior point method based on the logarithmic barrier function. A new proposal has also been given to simulate the D-P yield cone with the Mohr-Coulomb hexagonal yield pyramid. For the sake of illustration, bearing capacity factors N-c, N-q and N-gamma have been computed, as a function of phi, both for smooth and rough circular foundations. The results obtained from the analysis compare quite well with the solutions reported from literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the onset of magnetoconvection between two infinite horizontal planes subject to a vertical magnetic field aligned with background rotation. In order to gain insight into the convection taking place in the Earth's tangent cylinder, we target regimes of asymptotically strong rotation. The critical Rayleigh number Ra-c and critical wavenumber a(c) are computed numerically by solving the linear stability problem in a systematic way, with either stress-free or no-slip kinematic boundary conditions. A parametric study is conducted, varying the Ekman number E (ratio of viscous to Coriolis forces) and the Elsasser number. (ratio of the Lorentz force to the Coriolis force). E is varied from 10(-9) to 10(-2) and. from 10(-3) to 1. For a wide range of thermal and magnetic Prandtl numbers, our results verify and confirm previous experimental and theoretical results showing the existence of two distinct unstable modes at low values of E-one being controlled by the magnetic field, the other being controlled by viscosity (often called the viscous mode). It is shown that oscillatory onset does not occur in the range of parameters we are interested in. Asymptotic scalings for the onset of these modes are numerically confirmed and their domain of validity is precisely quantified. We show that with no-slip boundary conditions, the asymptotic behavior is reached for E < 10(-6) and establish a map in the (E, Lambda) plane. We distinguish regions where convection sets in either through the magnetic mode or through the viscous mode. Our analysis gives the regime in which the transition between magnetic and viscous modes may be observed. We also show that within the asymptotic regime, the role played by the kinematic boundary conditions is minimal. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper analyses deviated linear cyclic pursuit in which an agent pursues its leader with an angle of deviation in both the continuous- and discrete-time domains, while admitting heterogeneous gains and deviations for the agents. Sufficient conditions for the stability of such systems, in both the domains, are presented in this paper along with the derivation of the reachable set, which is a set of points where the agents may converge asymptotically. The stability conditions are derived based on Gershgorin's theorem. Simulations validating the theoretical results presented in this paper are provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polyhedral model provides an expressive intermediate representation that is convenient for the analysis and subsequent transformation of affine loop nests. Several heuristics exist for achieving complex program transformations in this model. However, there is also considerable scope to utilize this model to tackle the problem of automatic memory footprint optimization. In this paper, we present a new automatic storage optimization technique which can be used to achieve both intra-array as well as inter-array storage reuse with a pre-determined schedule for the computation. Our approach works by finding statement-wise storage partitioning hyper planes that partition a unified global array space so that values with overlapping live ranges are not mapped to the same partition. Our heuristic is driven by a fourfold objective function which not only minimizes the dimensionality and storage requirements of arrays required for each high-level statement, but also maximizes inter statement storage reuse. The storage mappings obtained using our heuristic can be asymptotically better than those obtained by any existing technique. We implement our technique and demonstrate its practical impact by evaluating its effectiveness on several benchmarks chosen from the domains of image processing, stencil computations, and high-performance computing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对双曲守恒型方程,将其一阶迎风格式空间差商的常系数摄动展开为时间步长和空间步长的幂级数,通过确定幂级数系数而获得二阶精度的摄动有限差分(PFD)格式。进而从双曲守恒型方程的通量分裂型一阶迎风格式出发,通过娄似的摄动展开方法,获得空间精度为二阶的通量分裂形式的摄动有限差分(FPFD)格式。这两类格式保留了一阶守恒迎风格式的简洁结构形式,使用三节点即可达到二阶精度,又避免了三点二阶格式的非物理数值振荡。并将这两类格式推广应用到双曲守恒型方程组,最后通过模型方程和一维激波管流动的数值算例验证了格式的高精度、高分辨率性质。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results on the stability of compressible inviscid swirling flows in an annular duct. Such flows are present in aeroengines, for example in the by-pass duct, and there are also similar flows in many aeroacoustic or aeronautical applications. The linearised Euler equations have a ('critical layer') singularity associated with pure convection of the unsteady disturbance by the mean flow, and we focus our attention on this region of the spectrum. By considering the critical layer singularity, we identify the continuous spectrum of the problem and describe how it contributes to the unsteady field. We find a very generic family of instability modes near to the continuous spectrum, whose eigenvalue wavenumbers form an infinite set and accumulate to a point in the complex plane. We study this accumulation process asymptotically, and find conditions on the flow to support such instabilities. It is also found that the continuous spectrum can cause a new type of instability, leading to algebraic growth with an exponent determined by the mean flow, given in the analysis. The exponent of algebraic growth can be arbitrarily large. Numerical demonstrations of the continuous spectrum instability, and also the modal instabilities are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OGY method is the most important method of controlling chaos. It stabilizes a hyperbolic periodic orbit by making small perturbations for a system parameter. This paper improves the method of choosing parameter, and gives a mathematics proof of it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper. the effect of indenter tip roundness on hardness behavior for two typical elastic perfectly plastic materials is studied by means of finite element simulation. A rigid conical indenter of semi apex angle 70.3 degrees fitted smoothly with a spherical tip is employed. It is shown that as the indentation depth increases hardness first rises from zero, reaches a maximum and then decreases slowly approaching asymptotically the limiting value equal to that due to a conical indenter of ideally sharp tip. The range within which hardness varies appreciably is comparable to the radius of the indenter tip. The difference between the maximum value and the limiting value depends on the yield stress over the Young's modulus ratio. The smaller this ratio the greater the difference is. Numerical simulation also provides an opportunity for checking the accuracy and limitations of the widely used Oliver-Pharr method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper, a rubber wedge compressed by a line load at its tip is asymptotically analyzed using a special constitutive law proposed by Knowles and Sternberg (K-S elastic law) [J. Elasticity 3 (1973) 67]. The method of dividing sectors proposed by Gao [Theoret. Appl. Fract, Mech. 14 (1990) 219] is used. Domain near the wedge tip can be divided into one expanding sector and two narrowing sectors. Asymptotic equations of the strain-stress field near the wedge tip are derived and solved numerically. The deformation pattern near a wedge tip is completely revealed. A special case. i.e. a half space compressed by a line load is solved while the wedge angle is pi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although approximate Bayesian computation (ABC) has become a popular technique for performing parameter estimation when the likelihood functions are analytically intractable there has not as yet been a complete investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the asymptotic properties of ABC based parameter estimators for hidden Markov models and show that ABC based estimators satisfy asymptotically biased versions of the standard results in the statistical literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A criterion of spatial chaos occurring in lattice dynamical systems-heteroclinic cycle-is discussed. It is proved that if the system has asymptotically stable heteroclinic cycle, then it has asymptotically stable homoclinic point which implies spatial chaos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct numerical simulation of transition How over a blunt cone with a freestream Mach number of 6, Reynolds number of 10,000 based on the nose radius, and a 1-deg angle of attack is performed by using a seventh-order weighted essentially nonoscillatory scheme for the convection terms of the Navier-Stokes equations, together with an eighth-order central finite difference scheme for the viscous terms. The wall blow-and-suction perturbations, including random perturbation and multifrequency perturbation, are used to trigger the transition. The maximum amplitude of the wall-normal velocity disturbance is set to 1% of the freestream velocity. The obtained transition locations on the cone surface agree well with each other far both cases. Transition onset is located at about 500 times the nose radius in the leeward section and 750 times the nose radius in the windward section. The frequency spectrum of velocity and pressure fluctuations at different streamwise locations are analyzed and compared with the linear stability theory. The second-mode disturbance wave is deemed to be the dominating disturbance because the growth rate of the second mode is much higher than the first mode. The reason why transition in the leeward section occurs earlier than that in the windward section is analyzed. It is not because of higher local growth rate of disturbance waves in the leeward section, but because the growth start location of the dominating second-mode wave in the leeward section is much earlier than that in the windward section.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical model for shallow-water equations has been built and tested on the Yin-Yang overset spherical grid. A high-order multimoment finite-volume method is used for the spatial discretization in which two kinds of so-called moments of the physical field [i.e., the volume integrated average ( VIA) and the point value (PV)] are treated as the model variables and updated separately in time. In the present model, the PV is computed by the semi-implicit semi-Lagrangian formulation, whereas the VIA is predicted in time via a flux-based finite-volume method and is numerically conserved on each component grid. The concept of including an extra moment (i.e., the volume-integrated value) to enforce the numerical conservativeness provides a general methodology and applies to the existing semi-implicit semi-Lagrangian formulations. Based on both VIA and PV, the high-order interpolation reconstruction can only be done over a single grid cell, which then minimizes the overlapping zone between the Yin and Yang components and effectively reduces the numerical errors introduced in the interpolation required to communicate the data between the two components. The present model completely gets around the singularity and grid convergence in the polar regions of the conventional longitude-latitude grid. Being an issue demanding further investigation, the high-order interpolation across the overlapping region of the Yin-Yang grid in the current model does not rigorously guarantee the numerical conservativeness. Nevertheless, these numerical tests show that the global conservation error in the present model is negligibly small. The model has competitive accuracy and efficiency.