976 resultados para amplitude de movimento articular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of the relative volumes of mineral and collagen to the nanomechanical behavior of articular calcified cartilage is explored using nanoindentation, quantitative backscattered electron imaging, and finite element analysis. Elastic modulus generally increases with mineral volume fraction. In highly mineralized tissues, the mineral occupation of water space significantly increases modulus with addition of little mineral. Mineral and organic phases were modeled using Hashin-Shtrikman composite bounds, calculated as a function of mineral volume fraction. Modulus values fall between the Hashin-Shtrikman bounds, indicating some intermediate degree of mineral phase connectivity. Such connectivity in ACC is greater than that achieved in bone and results from uniform collagen orientation and large volume of water space available for mineral occupation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel label processor which can recognize multiple spectral-amplitude-code labels using four-wave-mixing sidebands and selective optical filtering. Ten code-labels x 10 Gbps variable-length packets are transmitted over a 200 km single-hop switched network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafast self-switching of spectral-amplitude-encoded 40 Gb/s DPSK signals is demonstrated for the first time. Switching between 21 ports with 15nm maximum bin separation is achieved using a single correlator based on HNLF and an AWG. © 2009 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We simultaneously recorded auditory evoked potentials (AEP) from the temporal cortex (TCx), the dorsolateral prefrontal cortex (dPFCx) and the parietal cortex (PCx) in the freely moving rhesus monkey to investigate state-dependent changes of the AEP. AEPs obtained during passive wakefulness, active wakefulness (AW), slow wave sleep and rapid-eye-movement sleep (REM) were compared. Results showed that AEP from all three cerebral areas were modulated by brain states. However, the amplitude of AEP from dPFCx and PCx significantly appeared greater attenuation than that from the TCx during AW and REM. These results indicate that the modulation of brain state on AEP from all three cerebral areas investigated is not uniform, which suggests that different cerebral areas have differential functional contributions during sleep-wake cycle. (C) 2002 Elsevier Science Ireland Ltd.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prior synaptic or cellular activity influences degree or threshold for subsequent induction of synaptic plasticity, a process known as metaplasticity. Thus, the continual synaptic activity, spontaneous miniature excitatory synaptic current (mEPSC) may correlate to the induction of long-teen depression (LTD). Here, we recorded whole-cell EPSC and mEPSC alternately in the Schaffer-CA1 synapses in brain slice of young rats, and found that this recording configuration affected neither EPSC nor mEPSC. Low frequency stimulation (LFS) induced variable magnitudes of LTD. Remarkably, larger magnitudes of LTD were significantly correlated to smaller amplitude/lower frequency of the basal mEPSC. Furthermore, under the conditions reduced amplitude/frequency of the basal mEPSC by exposure to behavioral stress immediately before slice preparation or low concentration of calcium in bath solution, the magnitudes of LTD were still inversely correlated to mEPSC amplitude/frequency. These new findings suggest that spontaneous mEPSC may reflect functional and/or structural aspects of the synapses, the synaptic history ongoing metaplasticity. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of recent scientific and engineering problems require signals to be decomposed into a product of a slowly varying positive envelope and a quickly varying carrier whose instantaneous frequency also varies slowly over time. Although signal processing provides algorithms for so-called amplitude-and frequency-demodulation (AFD), there are well known problems with all of the existing methods. Motivated by the fact that AFD is ill-posed, we approach the problem using probabilistic inference. The new approach, called probabilistic amplitude and frequency demodulation (PAFD), models instantaneous frequency using an auto-regressive generalization of the von Mises distribution, and the envelopes using Gaussian auto-regressive dynamics with a positivity constraint. A novel form of expectation propagation is used for inference. We demonstrate that although PAFD is computationally demanding, it outperforms previous approaches on synthetic and real signals in clean, noisy and missing data settings.