983 resultados para alzheimer, hypertension, tension artérielle, central, ambulatoire
Resumo:
INTRODUCTION Significant pulmonary vascular disease is a leading cause of death in patients with scleroderma, and early detection and early medical intervention are important, as they may delay disease progression and improve survival and quality of life. Although several biomarkers have been proposed, there remains a need to define a reliable biomarker of early pulmonary vascular disease and subsequent development of pulmonary hypertension (PH). The purpose of this study was to define potential biomarkers for clinically significant pulmonary vascular disease in patients with scleroderma. METHODS The circulating growth factors basic fibroblast growth factor, placental growth factor (PlGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor, and soluble VEGF receptor 1 (sFlt-1), as well as cytokines (interleukin [IL]-1β IL-2, IL-4, IL-5, IL-8, IL-10, IL-12, IL-13, tumor necrosis factor-α, and interferon-γ), were quantified in patients with scleroderma with PH (n = 37) or without PH (n = 40). In non-parametric unadjusted analyses, we examined associations of growth factor and cytokine levels with PH. In a subset of each group, a second set of earlier samples, drawn 3.0±1.6 years earlier, were assessed to determine the changes over time. RESULTS sFlt-1 (p = 0.02) and PlGF (p = 0.02) were higher in the PH than in the non-PH group. sFlt-1 (ρ = 0.3245; p = 0.01) positively correlated with right ventricular systolic pressure. Both PlGF (p = 0.03) and sFlt-1 (p = 0.04) positively correlated with the ratio of forced vital capacity to diffusing capacity for carbon monoxide (DLCO), and both inversely correlated with DLCO (p = 0.01). Both PlGF and sFlt-1 levels were stable over time in the control population. CONCLUSIONS Our study demonstrated clear associations between regulators of angiogenesis (sFlt-1 and PlGF) and measures of PH in scleroderma and that these growth factors are potential biomarkers for PH in patients with scleroderma. Larger longitudinal studies are required for validation of our results.
Resumo:
Each year about 650,000 Europeans die from stroke and a similar number lives with the sequelae of multiple sclerosis (MS). Stroke and MS differ in their etiology. Although cause and likewise clinical presentation set the two diseases apart, they share common downstream mechanisms that lead to damage and recovery. Demyelination and axonal injury are characteristics of MS but are also observed in stroke. Conversely, hallmarks of stroke, such as vascular impairment and neurodegeneration, are found in MS. However, the most conspicuous common feature is the marked neuroinflammatory response, marked by glia cell activation and immune cell influx. In MS and stroke the blood-brain barrier is disrupted allowing bone marrow-derived macrophages to invade the brain in support of the resident microglia. In addition, there is a massive invasion of auto-reactive T-cells into the brain of patients with MS. Though less pronounced a similar phenomenon is also found in ischemic lesions. Not surprisingly, the two diseases also resemble each other at the level of gene expression and the biosynthesis of other proinflammatory mediators. While MS has traditionally been considered to be an autoimmune neuroinflammatory disorder, the role of inflammation for cerebral ischemia has only been recognized later. In the case of MS the long track record as neuroinflammatory disease has paid off with respect to treatment options. There are now about a dozen of approved drugs for the treatment of MS that specifically target neuroinflammation by modulating the immune system. Interestingly, experimental work demonstrated that drugs that are in routine use to mitigate neuroinflammation in MS may also work in stroke models. Examples include Fingolimod, glatiramer acetate, and antibodies blocking the leukocyte integrin VLA-4. Moreover, therapeutic strategies that were discovered in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, turned out to be also effective in experimental stroke models. This suggests that previous achievements in MS research may be relevant for stroke. Interestingly, the converse is equally true. Concepts on the neurovascular unit that were developed in a stroke context turned out to be applicable to neuroinflammatory research in MS. Examples include work on the important role of the vascular basement membrane and the BBB for the invasion of immune cells into the brain. Furthermore, tissue plasminogen activator (tPA), the only established drug treatment in acute stroke, modulates the pathogenesis of MS. Endogenous tPA is released from endothelium and astroglia and acts on the BBB, microglia and other neuroinflammatory cells. Thus, the vascular perspective of stroke research provides important input into the mechanisms on how endothelial cells and the BBB regulate inflammation in MS, particularly the invasion of immune cells into the CNS. In the current review we will first discuss pathogenesis of both diseases and current treatment regimens and will provide a detailed overview on pathways of immune cell migration across the barriers of the CNS and the role of activated astrocytes in this process. This article is part of a Special Issue entitled: Neuro inflammation: A common denominator for stroke, multiple sclerosis and Alzheimer's disease, guest edited by Helga de Vries and Markus Swaninger.
Resumo:
Alzheimer's disease (AD) is associated with greater mortality and reduced survival among individuals with Alzheimer's disease as compared to those without dementia. It is uncertain how these survival estimates change when the clinical signs and/or symptoms of comorbid conditions are present in individuals' with Alzheimer's disease. Cardiovascular risk factors such as hypertension, hyperlipidemia, congestive heart failure, coronary artery disease, and diabetes mellitus are common conditions in the aged population. Independently, these factors influence mortality and may have an additive effect on reduced survival in an individual with concomitant Alzheimer's disease. The bulk of the evidence from previous research efforts suggests an association between vascular co-morbidities and Alzheimer's disease incidence, but their role in survival remains to be elucidated. The objective of this proposed study was to examine the effects of cardiovascular comorbidities on the survival experience of individuals with probable Alzheimer's disease in order to identify prognostic factors for life expectancy following onset of disease. This study utilized data from the Baylor College of Medicine Alzheimer's Disease Center (ADC) longitudinal study of Alzheimer's disease and other memory disorders. Individuals between the ages of 55-69, 70-79, and ≥80 had a median survival from date of onset of 9.2 years, 8.0 years, and 7.2 years, respectively (p<0.001) and 5.5 years, 4.3 years, and 3.4 years from diagnosis. Sex was the strongest predictor of death from onset of AD, with females having a 30 percent lower risk compared to males. These findings further support the notion that age (both from onset and from diagnosis) and sex are the strongest predictors of survival among those with AD. ^
Resumo:
Attentional control and Information processing speed are central concepts in cognitive psychology and neuropsychology. Functional neuroimaging and neuropsychological assessment have depicted theoretical models considering attention as a complex and non-unitary process. One of its component processes, Attentional set-shifting ability, is commonly assessed using the Trail Making Test (TMT). Performance in the TMT decreases with increasing age in adults, Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Besides, speed of information processing (SIP) seems to modulate attentional performance. While neural correlates of attentional control have been widely studied, there are few evidences about the neural substrates of SIP in these groups of patients. Different authors have suggested that it could be a property of cerebral white matter, thus, deterioration of the white matter tracts that connect brain regions related to set-shifting may underlie the age-related, MCI and AD decrease in performance. The aim of this study was to study the anatomical dissociation of attentional and speed mechanisms. Diffusion tensor imaging (DTI) provides a unique insight into the cellular integrity of the brain, offering an in vivo view into the microarchitecture of cerebral white matter. At the same time, the study of ageing, characterized by white matter decline, provides the opportunity to study the anatomical substrates speeded or slowed information processing. We hypothesized that FA values would be inversely correlated with time to completion on Parts A and B of the TMT, but not the derived scores B/A and B-A.
Resumo:
Overactivity of the brain renin-angiotensin system (RAS) has been implicated in the development and maintenance of hypertension in several experimental models, such as spontaneously hypertensive rats and transgenic mice expressing both human renin and human angiotensinogen transgenes. We recently reported that, in the murine brain, angiotensin II (AngII) is converted to angiotensin III (AngIII) by aminopeptidase A (APA), whereas AngIII is inactivated by aminopeptidase N (APN). If injected into cerebral ventricles (ICV), AngII and AngIII cause similar pressor responses. Because AngII is metabolized in vivo into AngIII, the exact nature of the active peptide is not precisely determined. Here we report that, in rats, ICV injection of the selective APA inhibitor EC33 [(S)-3-amino-4-mercaptobutyl sulfonic acid] blocked the pressor response of exogenous AngII, suggesting that the conversion of AngII to AngIII is required to increase blood pressure (BP). Furthermore, ICV injection, but not i.v. injection, of EC33 alone caused a dose-dependent decrease in BP by blocking the formation of brain but not systemic AngIII. This is corroborated by the fact that the selective APN inhibitor, PC18 (2-amino-4-methylsulfonyl butane thiol), administered alone via the ICV route, increases BP. This pressor response was blocked by prior treatment with the angiotensin type 1 (AT1) receptor antagonist, losartan, showing that blocking the action of APN on AngIII metabolism leads to an increase in endogenous AngIII levels, resulting in BP increase, through interaction with AT1 receptors. These data demonstrate that AngIII is a major effector peptide of the brain RAS, exerting tonic stimulatory control over BP. Thus, APA, the enzyme responsible for the formation of brain AngIII, represents a potential central therapeutic target that justifies the development of APA inhibitors as central antihypertensive agents.
Resumo:
Mutations in the amyloid precursor protein (APP) gene cause early-onset familial Alzheimer disease (AD) by affecting the formation of the amyloid β (Aβ) peptide, the major constituent of AD plaques. We expressed human APP751 containing these mutations in the brains of transgenic mice. Two transgenic mouse lines develop pathological features reminiscent of AD. The degree of pathology depends on expression levels and specific mutations. A 2-fold overexpression of human APP with the Swedish double mutation at positions 670/671 combined with the V717I mutation causes Aβ deposition in neocortex and hippocampus of 18-month-old transgenic mice. The deposits are mostly of the diffuse type; however, some congophilic plaques can be detected. In mice with 7-fold overexpression of human APP harboring the Swedish mutation alone, typical plaques appear at 6 months, which increase with age and are Congo Red-positive at first detection. These congophilic plaques are accompanied by neuritic changes and dystrophic cholinergic fibers. Furthermore, inflammatory processes indicated by a massive glial reaction are apparent. Most notably, plaques are immunoreactive for hyperphosphorylated tau, reminiscent of early tau pathology. The immunoreactivity is exclusively found in congophilic senile plaques of both lines. In the higher expressing line, elevated tau phosphorylation can be demonstrated biochemically in 6-month-old animals and increases with age. These mice resemble major features of AD pathology and suggest a central role of Aβ in the pathogenesis of the disease.
Resumo:
This paper is devoted to the quantization of the degree of nonlinearity of the relationship between two biological variables when one of the variables is a complex nonstationary oscillatory signal. An example of the situation is the indicial responses of pulmonary blood pressure (P) to step changes of oxygen tension (ΔpO2) in the breathing gas. For a step change of ΔpO2 beginning at time t1, the pulmonary blood pressure is a nonlinear function of time and ΔpO2, which can be written as P(t-t1 | ΔpO2). An effective method does not exist to examine the nonlinear function P(t-t1 | ΔpO2). A systematic approach is proposed here. The definitions of mean trends and oscillations about the means are the keys. With these keys a practical method of calculation is devised. We fit the mean trends of blood pressure with analytic functions of time, whose nonlinearity with respect to the oxygen level is clarified here. The associated oscillations about the mean can be transformed into Hilbert spectrum. An integration of the square of the Hilbert spectrum over frequency yields a measure of oscillatory energy, which is also a function of time, whose mean trends can be expressed by analytic functions. The degree of nonlinearity of the oscillatory energy with respect to the oxygen level also is clarified here. Theoretical extension of the experimental nonlinear indicial functions to arbitrary history of hypoxia is proposed. Application of the results to tissue remodeling and tissue engineering of blood vessels is discussed.
Resumo:
Our goal was to compare measurement of tonometered saline and gastric juice partial carbon dioxide tension (PCO2). In this prospective observational study, 112 pairs of measurements were simultaneously obtained under various hemodynamic conditions, in 15 critical care patients. Linear regression analysis showed a significant correlation between the two methods of measuring PCO2 (r 2 = 0.43; P < 0.0001). However, gastric juice PCO2 was systematically higher (mean difference 51 mmHg). The 95% limits of agreement were 315 mmHg and the dispersion increased as the values of PCO2 increased. Tonometric and gastric juice PCO2 cannot be used interchangeably. Gastric juice PCO2 measurement should be interpreted with caution.
Resumo:
Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension. Passive immunization with T cells reactive to myelin basic protein or active immunization with myelin oligodendrocyte glycoprotein-derived peptide, although neuroprotective after optic nerve injury, was ineffective against glutamate toxicity in mice and rats. In contrast, the number of surviving retinal ganglion cells per square millimeter in glutamate-injected retinas was significantly larger in mice immunized 10 days previously with Cop-1 emulsified in complete Freund's adjuvant than in mice injected with PBS in the same adjuvant (2,133 ± 270 and 1,329 ± 121, respectively, mean ± SEM; P < 0.02). A similar pattern was observed when mice were immunized on the day of glutamate injection (1,777 ± 101 compared with 1,414 ± 36; P < 0.05), but not when they were immunized 48 h later. These findings suggest that protection from glutamate toxicity requires reinforcement of the immune system by antigens that are different from those associated with myelin. The use of Cop-1 apparently circumvents this antigen specificity barrier. In the rat ocular hypertension model, which simulates glaucoma, immunization with Cop-1 significantly reduced the retinal ganglion cell loss from 27.8% ± 6.8% to 4.3% ± 1.6%, without affecting the intraocular pressure. This study may point the way to a therapy for glaucoma, a neurodegenerative disease of the optic nerve often associated with increased intraocular pressure, as well as for acute and chronic degenerative disorders in which glutamate is a prominent participant.
Resumo:
Active immunization with the amyloid β (Aβ) peptide has been shown to decrease brain Aβ deposition in transgenic mouse models of Alzheimer's disease and certain peripherally administered anti-Aβ antibodies were shown to mimic this effect. In exploring factors that alter Aβ metabolism and clearance, we found that a monoclonal antibody (m266) directed against the central domain of Aβ was able to bind and completely sequester plasma Aβ. Peripheral administration of m266 to PDAPP transgenic mice, in which Aβ is generated specifically within the central nervous system (CNS), results in a rapid 1,000-fold increase in plasma Aβ, due, in part, to a change in Aβ equilibrium between the CNS and plasma. Although peripheral administration of m266 to PDAPP mice markedly reduces Aβ deposition, m266 did not bind to Aβ deposits in the brain. Thus, m266 appears to reduce brain Aβ burden by altering CNS and plasma Aβ clearance.
Resumo:
The epsilon 4 allele of apolipoprotein E (apoE) is a major risk factor for Alzheimer disease, suggesting that apoE may directly influence neurons in the aging brain. Recent data suggest that apoE-containing lipoproteins can influence neurite outgrowth in an isoform-specific fashion. The neuronal mediators of apoE effects have not been clarified. We show here that in a central nervous system-derived neuronal cell line, apoE3 but not apoE4 increases neurite extension. The effect of apoE3 was blocked at low nanomolar concentrations by purified 39-kDa protein that regulates ligand binding to the low density lipoprotein receptor-related protein (LRP). Anti-LRP antibody also completely abolished the neurite-promoting effect of apoE3. Understanding isoform-specific cell biological processes mediated by apoE-LRP interactions in central nervous system neurons may provide insight into Alzheimer disease pathogenesis.