998 resultados para accumulated thermal units
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE) IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS
Resumo:
In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF) fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.
Resumo:
This document presents particular description of work done during student’s internship in PR Metal company realized as ERASMUS PROJECT at ISEP. All information including company’s description and its structure, overview of the problems and analyzed cases, all stages of projects from concept to conclusion can be found here. Description of work done during the internship is divided here into two pieces. First part concerns one activities of the company which is robotic chefs (kitchen robot) production line. Work, that was done for development of this line involved several tasks, among them: creating a single-worker montage station for screwing robots housing’s parts, improve security system for laser welding chamber, what particularly consists in designing automatically closing door system with special surface, that protects against destructive action of laser beam, test station for examination of durability of heating connectors, solving problem with rotors vibrations. Second part tells about main task, realized in second half of internship and stands a complete description of machine development and design. The machine is a part of car handle latch cable production line and its tasks are: cutting cable to required length and hot-forming plastic cover for further assembly needs.
Resumo:
SUMMARYResearch on Paracoccidioides brasiliensis has centered in the yeast cell probably because of the lack of distinctive features in the mycelium. In 1942 and for the first time, lateral conidia were noticed in the fungus' hyphae. Later on, Brazilian, Venezuelan and Argentinean researchers described "aleurias" when the fungus was grown in natural substrates. In 1970 authors became interested in the conidia and were able to obtain them in large numbers and treat them as individual units. Their shape and size were defined and the presence of all the elements of a competent eukaryotic cell were demonstrated. Conidia exhibited thermal dimorphism and, additionally, when given intranasally to BALB/c male mice, they converted into yeasts in the lungs and produce progressive pulmonary lesions with further dissemination to other organs. Studies on the phagocyte-conidia interaction were revealing and showed that these versatile structures allow a better understanding of the host- P. brasiliensisinteractions.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Four years after the first visit seventeen public health units were visited again and evaluated as to standards of storage recommended by the Brazilian Immunization Programme. In 100% of the units, refrigerators and proper inside location of vaccines in the refrigerator were adequatety or regularfy maintained and checked, respectively. However, when control of temperature was checked, onfy 64.7% presented adequate storage conditions. In 94.1 % of the units, health workers complained of lack of immediate technical support in emergency situations. In 55.2 % the titers vaccine samples of were under the minimal recommended potency. It is necessary that the factors concerning the cold chain be continualfy evaluated so that the quality of the vaccines that will be used is not affected.
Resumo:
Construction and Building Materials 49 (2013), 315-327
Resumo:
Dissertation to obtain the degree of Doctor of Philosophy in Biomedical Engineering
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
High reflective paints (cool paints) are used on flat roofs to reduce heat gains from the incidence of solar radiation and thus improve the thermal comfort and energy efficiency of buildings, especially in summer periods. Given the application potential of these paints on vertical surfaces, a research study has been developed to evaluate the thermal performance of reflective paints on walls under real exposure conditions. Accordingly, different reflective paints have been applied as the final coating of an ETICS type solution, on the facades of a full scale experimental cell built at LNEC campus. For being applied in an ETICS system a paint has to fulfill several requirements, whether aesthetic or functional (such as the adhesion between the coating layers or the durability of the insulation), essential for its efficient performance. Since this construction coating system is subject to a prolonged sun exposure, various problems may arise, such as paint degradation or deterioration of the thermal insulation properties, particularly when dark colors are applied. To evaluate the thermal performance of the chosen paints, the method of non-destructive analysis by Infrared Thermography was used. Thermography allows knowing the temperature distribution of facades by measuring the radiation emitted by their surfaces. To complement the thermographic diagnosis, thermocouples were placed between the insulation and the paint system of the experimental cell. Additional laboratory tests allowed the characterization of the optical properties (reflectance and emittance) of the different reflective paints used in this study. The comparative analysis of the thermal performance of reflective and conventional paints revealed that the reflective paint allows a reduction of the facade surface temperature, reducing the risk of loss of insulating properties of the ETICS system and thus ensuring its longevity and functionality. The color of the paint used affects, naturally, the reflective ability of the surface and may have an important role in energy balance of the building. This paper also showed the potential of infrared thermography in the evaluation of the thermal performance of reflective paints.
Resumo:
A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to sudden income heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger (“Power Booster mode”). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at RT in order to work as a closed system. Experimental results in the power booster mode will be described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (24 cm3) was linked to the cryocooler cold finger through a gas gap heat switch for thermal coupling/decoupling of the cold finger. We will show that, by controlling the enthalpy reservoir’s pressure, 900 J can be stored at a constant temperature of 40 K as in a triple-point ESU.
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices, implemented as a software,describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices,implemented as a software, describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA) is spread out in hospitals across different regions of the world and is regarded as the major agent of nosocomial infections, causing infections such as skin and soft tissue pneumonia and sepsis. The aim of this study was to identify risk factors for methicillin-resistance in Staphylococcus aureus bloodstream infection (BSI) and the predictive factors for death. METHODS: A retrospective cohort of fifty-one patients presenting bacteraemia due to S. aureus between September 2006 and September 2008 was analysed. Staphylococcu aureus samples were obtained from blood cultures performed by clinical hospital microbiology laboratory from the Uberlândia Federal University. Methicillinresistance was determined by growth on oxacillin screen agar and antimicrobial susceptibility by means of the disk diffusion method. RESULTS: We found similar numbers of MRSA (56.8%) and methicillin-susceptible Staphylococcus aureus (MSSA) (43.2%) infections, and the overall hospital mortality ratio was 47%, predominantly in MRSA group (70.8% vs. 29.2%) (p=0.05). Age (p=0.02) was significantly higher in MRSA patients as also was the use of central venous catheter (p=0.02). The use of two or more antimicrobial agents (p=0.03) and the length of hospital stay prior to bacteraemia superior to seven days (p=0.006) were associated with mortality. High odds ratio value was observed in cardiopathy as comorbidity. CONCLUSIONS: Despite several risk factors associated with MRSA and MSSA infection, the use of two or more antimicrobial agents was the unique independent variable associated with mortality.