930 resultados para XRD and SEM


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two ways of application of intensive milling in ZnO varistors processing were compared. First was intensive milling of mixture of previously prepared constituent phases. In this case, intensive milling was applied only to obtain highly activated nanocrystalline varistor powder mixtures. Second application is intensive milling of simple mixture of oxides that could result not only in activation and formation of nanocrystal line powders, but also in mechanochernical reaction and synthesis of constituent phases. Powders and ceramics samples were characterized by XRD and SEM analysis. as well as by de electrical measurements (nonlinearity coefficients, leakage current and breakdown field). Differences in microstructural and electrical properties of obtained varistors were discussed and optimal milling and processing conditions were recommended. The best electrical characteristics were found in sample ZI -DMCP-m, which exhibited leakage current of 2.5 mu A/cm(2), nonlinear coefficient reaching 58 and breakdown field of 8950 V/cm. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crystalline PbTiO3 was obtained through the thermal decomposition of 8-hydroxyquinolinate of lead(II) and that of titanium(IV), which was monitored by TG/DTG/DTA under different atmospheric conditions and with varying heating rates. The compound was prepared from adding 8-hydroxyquinoline solution in the solution of metallic ions Pb(II):Ti(IV) (1:1) Linder constant stirring at 3degreesC, having the pH adjusted to 10. The results of these investigations show that different thermal behavior related to the precursor occurred and also the consequent formation of residues which have different crystallinities. No carbonate residues from the thermal decomposition could be determined by XRD and IR. Only PbTiO3 was observed and confirmed by DSC at 470degreesC, temperature lower than the tetragonal-cubic transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pt-modified RuO2 was prepared by a sol-gel procedure on titanium substrates in the form of thin films of similar to2-mum thickness. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that these films actually consist of Pt nanoparticles dispersed in RuO2 and that neither metallic Ru nor Pt-Ru alloy are present on the surface. Electrodes with different Pt:Ru nominal compositions were prepared and their electrocatalytic activity for the oxidation of methanol was investigated by potential sweeps and chronoamperometry. The results obtained show an enhancement effect for methanol oxidation that can be interpreted as associated to the formation of hydrous oxides on the RuO2 surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallic stearates were used as precursors to obtain BaTiO3. Barium and titanium stearate mixtures were homogenized in ball mill containing some amount of ammonium stearate. The mixture of the precursors was evaluated by simultaneous TG/ DTA and TMA, and residues from thermal decomposition were characterized by XRD and SEM. It could be verified that the residues from the thermal decomposition in both oxidant and inert atmospheres were the BaTiO3 but with characteristic morphological and crystalline aspects depending on the experimental conditions in which the mixtures of precursors were obtained. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Er3+ ions were added to the PbTiO3 network using the polymeric precursor method to characterize the order-disorder transformation found in this material by means of experimental and theoretical approach. The disordered and ordered material structures were studied by photoluminescence measurements, X-ray diffraction (XRD) and U-V-visible spectroscopy. The Er3+ ions served as a marker to identify the structural short-range order beginning in the PbTiO3 matrix. From photoluminescence results it was concluded that disordered PbTiO3 powders have a certain short range order in the network that are undetected by XRD measurements. The electronic structures were calculated by the ab initio periodic method in DFT level with the non-local B3LYP hybrid approximation for the Ti atom site interpretation using density of states (DOS) results. This analysis enabled understanding that Ti atom sphere coordination can create possible states for radioactive return and trap of electron-holes pair. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the effect of the substrate microstructure on the formation of SnO2 membranes and of the sintering conditions on their porosity have been analysed. Samples have been prepared by colloidal suspensions cast on alumina or kaolin substrates. Supported membranes have been characterized by Hg porosimetry, MEV, XRD and N-2 adsorption-desorption isotherms. The results show that the narrower pore size distribution of alumina substrate allowed to prepare membranes more homogeneous and free of cracks than that supported on kaolin. The crystallite and pore sizes of the membranes could be controlled by adjusting the temperature of sintering, allowing materials with adequate microstructure with application for ultrafiltration process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The polymeric precursor method was used to synthesize lead zirconate titanate powder (PZT). The crystalline powder was then amorphized by a high-energy ball milling process during 120h. A strong photoluminescence emission was observed at room temperature for the amorphized PZT powder. The powders were characterized by XRD and the percentage of amorphous phase was calculated through Rietveld refinement. The microstructure for both phases was investigated by TEM. The optical gap was calculated through the Wood and Tauc method using the UV-Vis. data. Quantum mechanical calculations were carried out to give an interpretation of the photoluminescence in terms of electronic structure. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Noncrystalline silica was obtained with low iron, sodium, and nitrate ions concentrations from soluble sodium silicate (water glass) and nitric acid solution. Extractions with nitric acid solution and/or deionized water and/or dialysis were carried out to eliminate soluble metal ions. Products were dried in a microwave oven and characterized by chemical analysis, XRD, and IR. Dialysis seems to be the best treatment for the elimination of sodium and nitrate ions. Silica purified by nitric acid and water extractions followed by dialysis yields the purest silica sample.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanosized and highly reactive magnesium mobate (MgNb2O6) powders were successfully synthesized by a new wet-chemical method by means of the dissolution of Nb2O5 center dot 5H(2)O and in a solution of oxalic acid followed by the addition of stoichiometric amounts of magnesium carbonate. The Nb-Mg-oxalic acid solution was evaporated resulting in a dry and amorphous powder that was calcined in the temperature range from 200 to 900 degrees C for 2 h. The crystallization process from the amorphous state to the crystalline MgNb2O6 was followed by thermal analysis. The calcined powders characterized by FT-Raman spectroscopy, X-ray diffraction (XRD) and their morphology examined by high resolution scanning electron microscopy (HR-SEM). Pure MgNb2O6, free from the second phases and obtained at 800 degrees C was confirmed by a combined analysis using XRD and FT-Raman. The average diameter of the particles was calculated from the HR-SEM image as 70 urn approximately. This technique allows a better mixing of the constituent elements and thus a better reactivity of the mixture to obtain pre-reaction products with high purity at lower temperatures and reducing cost. It can offer a great advantage in the PMN-PT formation with respect to the solid-state synthesis. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glass ionomer cements (GICs) are glass and polymer composite materials. These materials currently find use in the dental field. The purpose of this work is to obtain systems based on composition 4.5SiO(2)-3Al(2)O(3)-XNb2O5-2CaO to be used in Dentistry. The systems were prepared by chemical route at 700 degrees C. The results obtained by XRD and DTA showed that all systems prepared are glasses. The structures of the obtained glasses were compared to commercial material using Al-27 and Si-29 MAS NMR. The analysis of MAS NMR spectra indicated that the systems developed and commercial material are formed by SiO4 and AlO4 linked tetrahedra. The properties of glass ionomer cements based on the glasses prepared with several niobium contents were studied. Setting and working times of the cement pastes, microhardness and diametral tensile strength were evaluated for the experimental GICs and commercial luting cements. It was concluded that setting time of the cement pastes increased with increasing niobium content of the glasses (X). The properties to the GICs such as setting time and microhardness were influenced by niobium content. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we investigated the formation of porous silica matrix obtained by hydrothermal treatment under saturated steam condition from Pyrex (R) glass. This investigation was carried out by scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray powder diffractometry (XRD) and Raman microscopy. We observed the presence of connected and homogeneously distributed pores in a non-crystalline silica phase and a detectable interface between silica and remnant glass phases resulting in a framework similar to asymmetric membranes. The results indicate that the process of phase separation takes place at lower temperature than that of glass-transition on the surface of the glass phase. Essential reaction between water and silica at supercritical condition together with the formation and leaching of soluble phase contribute to obtain porous silica matrix, (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amorphous and crystalline powder of PLT phase was synthesized by using the Pechini method. Infrared (FTIR) analysis of the polymeric resin shows intense bands of organic materials from 250 to 1620 cm(-1). X-ray diffraction (XRD) and Raman spectra of calcined powder at different temperatures show amorphous phase at 450 degrees C/3 h, semi-crystalline phase at 550 degrees C/3 h and a crystalline phase at 800 degrees C/3 h. Luminescence effect was observed in amorphous powder calcined from 300 to 350 degrees/3 h with broad absorption peaks in 579 nm at 300 degrees C/3 h and 603 rum at 350 degrees C/3 h, respectively. The photoluminescence effect is attributed to emissions of Ti -> 0 directly from the oxygen 2p orbital (valence band) to the titanate 3d orbital (conduction bands). (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samarium doped PbTiO3 (PT:Sm) and pure PbTiO3 (PT) powders were obtained by polymeric precursor method. These powders were characterized by X-ray diffraction (XRD) and theoretical calculations using the CRYSTAL98 program. The effect of the samarium atom is taken into account only indirectly. The experimental models were compared with the cubic (ideal) and tetragonal theoretical models. The structure deformations existent in the experimental compounds were analyzed from the tiny structural differences that lead to perturbations in the crystal orbital splittings. This paper proposes an efficient alternative methodology for defining structural distortions. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precursor powders to obtain SrTiO3 were prepared by using 8-hydroxyquinoline precipitant agent. The residues from the thermal decomposition, followed by TG/DTG/DTA, were characterized by XRD and it could be verified that the mixed oxides could be obtained varying the thermal decomposition conditions like atmosphere and heating rate. However, the morphology and crystallinity of these residues is highly affected by such variations. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we describe a new route to synthesize ultrafine rare earth doped and undoped tin oxide particles for catalytic applications. The catalytic behavior observed in SnO2 samples suggests the control of the catalytic activity and the selectivity of the products by the segregation of a layer of a rare earth compound with the increase of the heat-treatment temperature. The ultrafine particles were characterized by means of BET, XPS, TEM, XRD and Rietveld refinement. It was demonstrated that the effects of the dopant on the methanol decomposition reaction and on the H-2 selectivity were correlated with the segregation of a rare earth layer on the tin oxide samples. (C) 2002 Published by Elsevier B.V. B.V.