838 resultados para Wind power generator


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel analysis of the utilisation of small grid scale energy storage to mitigate negative system operational impacts due to high penetrations of wind power. This was investigated by artificially lowering the minimum stable generation level of a gas thermal generating unit coupled to a storage device over a five hour storage charging window using a unit commitment and economic dispatch model. The key findings of the analysis were a 0.18% reduction in wind curtailment, a 2.35 MW/min reduction in the ramping rate required to be met by all generators in the test system during a representative period and a total generation cost reduction of €6.5 million.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Like any new technology, tidal power converters are being assessed for potential environmental impacts. Similar to wind power, where noise emissions have led to some regulations and limitations on consented installation sites, noise emissions of these new tidal devices attract considerable attention, especially due to the possible interaction with the marine fauna. However, the effect of turbine noise cannot be assessed as a stand-alone issue, but must be investigated in the context of the natural background noise in high flow environments. Noise measurements are also believed to be a useful tool for monitoring the operating conditions and health of equipment. While underwater noise measurements are not trivial to perform, this non-intrusive mon- itoring method could prove to be very cost effective. This paper presents sound measurements performed on the SCHOTTEL Instream Turbine as part of the MaRINET testing campaign at the QUB tidal test site in Portaferry during the summer of 2014. This paper demonstrates a comparison of the turbine noise emissions with the normal background noise at the test site and presents possible applications as a monitoring system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Throughout the European Union there is an increasing amount of wind generation being dispatched-down due to the binding of power system operating constraints from high levels of wind generation. This paper examines the impact a system non-synchronous penetration limit has on the dispatch-down of wind and quantifies the significance of interconnector counter-trading to the priority dispatching of wind power. A fully coupled economic dispatch and security constrained unit commitment model of the Single Electricity Market of the Republic of Ireland and Northern Ireland and the British Electricity Trading and Transmission Arrangement was used in this study. The key finding was interconnector counter-trading reduces the impact the system non-synchronous penetration limit has on the dispatch-down of wind. The capability to counter-trade on the interconnectors and an increase in system non-synchronous penetration limit from 50% to 55% reduces the dispatch-down of wind by 311 GW h and decreases total electricity payments to the consumer by €1.72/MW h. In terms of the European Union electricity market integration, the results show the importance of developing individual electricity markets that allow system operators to counter-trade on interconnectors to ensure the priority dispatch of the increasing levels of wind generation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need for fast response demand side participation (DSP) has never been greater due to increased wind power penetration. White domestic goods suppliers are currently developing a `smart' chip for a range of domestic appliances (e.g. refrigeration units, tumble dryers and storage heaters) to support the home as a DSP unit in future power systems. This paper presents an aggregated population-based model of a single compressor fridge-freezer. Two scenarios (i.e. energy efficiency class and size) for valley filling and peak shaving are examined to quantify and value DSP savings in 2020. The analysis shows potential peak reductions of 40 MW to 55 MW are achievable in the Single wholesale Electricity Market of Ireland (i.e. the test system), and valley demand increases of up to 30 MW. The study also shows the importance of the control strategy start time and the staggering of the devices to obtain the desired filling or shaving effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Edificações

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ao longo dos últimos anos tem-se assistido a um forte desenvolvimento e crescimento do número de parques eólicos instalados no mundo, o que leva a que seja necessário o incremento de ferramentas que permitam aperfeiçoar os sistemas de monitorização e controlo atualmente existentes. Por outro lado, não se deve deixar de ter em conta os custos elevados de operação e manutenção dos sistemas eólicos bem como o facto de os aerogeradores estarem localizadas em locais remotos ou offshore, o que faz aumentar os custos associados à sua exploração. A dissertação nasce da intenção clara do mercado em apostar na supervisão e previsão de avarias graves, de forma a minimizar os encargos subjacentes. Este trabalho de dissertação visa a utilização de redes neuronais para criar uma ferramenta informática de previsão de avarias em caixas de engrenagens em aerogeradores. As redes neuronais são ferramentas informáticas ideais para trabalhar com muita informação, sendo que a sua aplicação depende da qualidade e quantidade dos dados. Para tal irá ser efetuado um estudo em um parque eólico, no qual se analisará as principais avarias detetadas bem como as grandezas que deverão integrar a construção desta rede neuronal. Assim sendo, a informação relativa às diversas máquinas existentes num parque, é de enorme importância para a definição e otimização da rede neuronal a construir. Os resultados obtidos neste trabalho com a aplicação de redes neuronais para a previsão de avarias em caixas de engrenagens do parque eólico de estudo, provam que é possível realizar uma deteção da avaria bem como uma constatação de que a reparação possa ter sido bem efetuada ou mal sucedida, podendo assim ser ajustados os programas de manutenção a efetuar e uma verificação das ações de reparação para sua validação.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Maßnahmen zur Förderung der Windenergie in Deutschland haben wichtige Anstöße zur technologischen Weiterentwicklung geliefert und die Grundlagen für den enormen Anlagenzubau geschaffen. Die installierte Windleistung hat heute eine beachtliche Größenordnung erreicht und ein weiteres Wachstum in ähnlichen Dimensionen ist auch für die nächsten Jahre zu erwarten. Die aus Wind erzeugte elektrische Leistung deckt bereits heute in einigen Netzbereichen die Netzlast zu Schwachlastzeiten. Dies zeigt, dass die Windenergie ein nicht mehr zu vernachlässigender Faktor in der elektrischen Energieversorgung geworden ist. Im Rahmen der Kraftwerkseinsatzplanung sind Betrag und Verlauf der Windleistung des folgenden Tages mittlerweile zu wichtigen und zugleich schwierig zu bestimmenden Variablen geworden. Starke Schwankungen und falsche Prognosen der Windstromeinspeisung verursachen zusätzlichen Bedarf an Regel- und Ausgleichsleistung durch die Systemführung. Das im Rahmen dieser Arbeit entwickelte Prognosemodell liefert die zu erwartenden Windleistungen an 16 repräsentativen Windparks bzw. Gruppen von Windparks für bis zu 48 Stunden im Voraus. Aufgrund von prognostizierten Wetterdaten des deutschen Wetterdienstes (DWD) werden die Leistungen der einzelnen Windparks mit Hilfe von künstlichen neuronalen Netzen (KNN) berechnet. Diese Methode hat gegenüber physikalischen Verfahren den Vorteil, dass der komplexe Zusammenhang zwischen Wettergeschehen und Windparkleistung nicht aufwendig analysiert und detailliert mathematisch beschrieben werden muss, sondern anhand von Daten aus der Vergangenheit von den KNN gelernt wird. Das Prognosemodell besteht aus zwei Modulen. Mit dem ersten wird, basierend auf den meteorologischen Vorhersagen des DWD, eine Prognose für den Folgetag erstellt. Das zweite Modul bezieht die online gemessenen Leistungsdaten der repräsentativen Windparks mit ein, um die ursprüngliche Folgetagsprognose zu verbessern und eine sehr genaue Kurzzeitprognose für die nächsten drei bis sechs Stunden zu berechnen. Mit den Ergebnissen der Prognosemodule für die repräsentativen Standorte wird dann über ein Transformationsmodell, dem so genannten Online-Modell, die Gesamteinspeisung in einem größeren Gebiet berechnet. Das Prognoseverfahren hat seine besonderen Vorzüge in der Genauigkeit, den geringen Rechenzeiten und den niedrigen Betriebskosten, da durch die Verwendung des bereits implementierten Online-Modells nur eine geringe Anzahl von Vorhersage- und Messstandorten benötigt wird. Das hier vorgestellte Prognosemodell wurde ursprünglich für die E.ON-Netz GmbH entwickelt und optimiert und ist dort seit Juli 2001 im Einsatz. Es lässt sich jedoch auch leicht an andere Gebiete anpassen. Benötigt werden dazu nur die Messdaten der Leistung ausgewählter repräsentativer Windparks sowie die dazu gehörenden Wettervorhersagen, um die KNN entsprechend zu trainieren.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dieser Arbeit werden verschiedene Computermodelle, Rechenverfahren und Methoden zur Unterstützung bei der Integration großer Windleistungen in die elektrische Energieversorgung entwickelt. Das Rechenmodell zur Simulation der zeitgleich eingespeisten Windenergie erzeugt Summenganglinien von beliebig zusammengestellten Gruppen von Windenergieanlagen, basierend auf gemessenen Wind- und Leistungsdaten der nahen Vergangenheit. Dieses Modell liefert wichtige Basisdaten für die Analyse der Windenergieeinspeisung auch für zukünftige Szenarien. Für die Untersuchung der Auswirkungen von Windenergieeinspeisungen großräumiger Anlagenverbünde im Gigawattbereich werden verschiedene statistische Analysen und anschauliche Darstellungen erarbeitet. Das im Rahmen dieser Arbeit entwickelte Modell zur Berechnung der aktuell eingespeisten Windenergie aus online gemessenen Leistungsdaten repräsentativer Windparks liefert wertvolle Informationen für die Leistungs- und Frequenzregelung der Netzbetreiber. Die zugehörigen Verfahren zur Ermittlung der repräsentativen Standorte und zur Überprüfung der Repräsentativität bilden die Grundlage für eine genaue Abbildung der Windenergieeinspeisung für größere Versorgungsgebiete, basierend auf nur wenigen Leistungsmessungen an Windparks. Ein weiteres wertvolles Werkzeug für die optimale Einbindung der Windenergie in die elektrische Energieversorgung bilden die Prognosemodelle, die die kurz- bis mittelfristig zu erwartende Windenergieeinspeisung ermitteln. In dieser Arbeit werden, aufbauend auf vorangegangenen Forschungsarbeiten, zwei, auf Künstlich Neuronalen Netzen basierende Modelle vorgestellt, die den zeitlichen Verlauf der zu erwarten Windenergie für Netzregionen und Regelzonen mit Hilfe von gemessenen Leistungsdaten oder prognostizierten meteorologischen Parametern zur Verfügung stellen. Die softwaretechnische Zusammenfassung des Modells zur Berechnung der aktuell eingespeisten Windenergie und der Modelle für die Kurzzeit- und Folgetagsprognose bietet eine attraktive Komplettlösung für die Einbindung der Windenergie in die Leitwarten der Netzbetreiber. Die dabei entwickelten Schnittstellen und die modulare Struktur des Programms ermöglichen eine einfache und schnelle Implementierung in beliebige Systemumgebungen. Basierend auf der Leistungsfähigkeit der Online- und Prognosemodelle werden Betriebsführungsstrategien für zu Clustern im Gigawattbereich zusammengefasste Windparks behandelt, die eine nach ökologischen und betriebswirtschaftlichen Gesichtspunkten sowie nach Aspekten der Versorgungssicherheit optimale Einbindung der geplanten Offshore-Windparks ermöglichen sollen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dieser Arbeit werden die sich abzeichnenden zukünftigen Möglichkeiten, Stärken und Schwächen der Kraft-Wärme-Kopplung (KWK) untersucht. Dies geschieht vor dem Hintergrund des Klimawandels, der Integration steigender Anteile Erneuerbarer Energien in die Stromerzeugung und unter Berücksichtigung der sich damit ergebenden Herausforderungen, eine sichere und nachhaltige Stromversorgung zu gestalten. Der Fokus liegt auf der Dieselmotor-KWK und der Nutzung nachwachsender Kraftstoffe. Es wird davon ausgegangen, dass der Übergang zu einer reinen Stromerzeugung aus Erneuerbaren Energiequellen in Deutschland unter erheblicher Einbindung des hohen Potentials der kostengünstigen, umweltfreundlichen, aber in der Leistung extrem fluktuierenden Windenergie erfolgen wird. Als dezentrales Integrationswerkzeug wurde die Kraft-Wärme-Kopplung mit Dieselmotoren untersucht. Sie entspricht aufgrund ihrer großen Flexibilität und ihrer hohen Wirkungsgrade mit vergleichsweise kleinen Leistungen sehr gut den Anforderungen der gleichzeitigen dezentralen Wärmenutzung. In der Dissertation werden die Randbedingungen der Dieselmotor-KWK untersucht und beschrieben. Darauf aufbauend werden unterschiedliche Modelle der Windintegration durch KWK erarbeitet und in diversen Variationen wird der Ausgleich der Stromerzeugung aus Windenergie durch KWK simuliert. Darüber hinaus werden dezentrale KWK-Anlagen hinsichtlich eines koordinierten gemeinsamen Betriebs und hinsichtlich der optimalen Auslegung für den Windenergieausgleich betrachtet. Es wird für den beschriebenen Kontext der Erneuerbaren Energien und der Kraft-Wärme-Kopplung das Thema „Umweltwirkungen“ diskutiert. Es wird dargelegt, dass die heute verwendeten Ansätze zur Bewertung der KWK zu einer Verzerrung der Ergebnisse führen. Demgegenüber wurde mit der so genannten Outputmethode eine Methode der Ökobilanzierung vorgestellt, die, im Gegensatz zu den anderen Methoden, keine verzerrenden Annahmen in die Wirkungsabschätzung aufnimmt und somit eine eindeutige und rein wissenschaftliche Auswertung bleibt. Hiermit ist die Grundlage für die Bewertung der unterschiedlichen Technologien und Szenarien sowie für die Einordnung der KWK in den Kontext der Energieerzeugung gegeben. Mit der Outputmethode wird u.a. rechnerisch bewiesen, dass die gekoppelte Strom- und Wärmeerzeugung in KWK-Anlagen tatsächlich die optimale Nutzung der regenerativen Kraftstoffe „Biogas“ und „Pflanzenöl“ im Hinblick auf Ressourceneinsatz, Treibhausgaseinsparung und Exergieerzeugung ist. Es wurde darüber hinaus die Frage untersucht woher die für die Stromerzeugung durch Dieselmotor-KWK-Anlagen notwendige Bioenergie genommen werden kann. Es ist erwiesen, dass die in Deutschland nutzbare landwirtschaftliche Fläche nur zur Deckung eines Teils der Stromerzeugung ausreichen würde. Einheimisches Biogas und nachhaltiges importiertes Pflanzenöl, das in hohem Maße auf degradierten Böden angebaut werden sollte, können die notwendige Brennstoffenergie liefern. Um im Ausland ausreichend Pflanzenöl herstellen zu können, wird eine landwirtschaftliche Fläche von 6 bis 12 Mio. ha benötigt. Das Ergebnis ist, dass ein voller Ausgleich von Windenergie-Restlast durch KWK mit Erneuerbaren Energieträgern sinnvoll und machbar ist! Dieses Wind-KWK-DSM-System sollte durch ein Stromnetz ergänzt sein, das Wasserkraftstrom für den Großteil der Regelenergieaufgaben nutzt, und das den großräumigen Ausgleich Erneuerbarer Energien in Europa und den Nachbarregionen ermöglicht.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In dieser Arbeit wird ein Verfahren zum Einsatz neuronaler Netzwerke vorgestellt, das auf iterative Weise Klassifikation und Prognoseschritte mit dem Ziel kombiniert, bessere Ergebnisse der Prognose im Vergleich zu einer einmaligen hintereinander Ausführung dieser Schritte zu erreichen. Dieses Verfahren wird am Beispiel der Prognose der Windstromerzeugung abhängig von der Wettersituation erörtert. Eine Verbesserung wird in diesem Rahmen mit einzelnen Ausreißern erreicht. Verschiedene Aspekte werden in drei Kapiteln diskutiert: In Kapitel 1 werden die verwendeten Daten und ihre elektronische Verarbeitung vorgestellt. Die Daten bestehen zum einen aus Windleistungshochrechnungen für die Bundesrepublik Deutschland der Jahre 2011 und 2012, welche als Transparenzanforderung des Erneuerbaren Energiegesetzes durch die Übertragungsnetzbetreiber publiziert werden müssen. Zum anderen werden Wetterprognosen, die der Deutsche Wetterdienst im Rahmen der Grundversorgung kostenlos bereitstellt, verwendet. Kapitel 2 erläutert zwei aus der Literatur bekannte Verfahren - Online- und Batchalgorithmus - zum Training einer selbstorganisierenden Karte. Aus den dargelegten Verfahrenseigenschaften begründet sich die Wahl des Batchverfahrens für die in Kapitel 3 erläuterte Methode. Das in Kapitel 3 vorgestellte Verfahren hat im modellierten operativen Einsatz den gleichen Ablauf, wie eine Klassifikation mit anschließender klassenspezifischer Prognose. Bei dem Training des Verfahrens wird allerdings iterativ vorgegangen, indem im Anschluss an das Training der klassenspezifischen Prognose ermittelt wird, zu welcher Klasse der Klassifikation ein Eingabedatum gehören sollte, um mit den vorliegenden klassenspezifischen Prognosemodellen die höchste Prognosegüte zu erzielen. Die so gewonnene Einteilung der Eingaben kann genutzt werden, um wiederum eine neue Klassifikationsstufe zu trainieren, deren Klassen eine verbesserte klassenspezifisch Prognose ermöglichen.