952 resultados para Wide-Area Measurements
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Entrance to San Francisco Bay, California, from a trigonometrical survey under the direction of A.D. Bache, Superintendent of the Survey of the Coast of the United States ; triangulation by R.D. Cutts, asst. & A.F. Rodgers, sub-asst. ; topography by R.D. Cutts, asst., A.M. Harrison & A.F. Rodgers, sub-assts. ; hydrography by the party under the command of Lieut. Comdg. James Alden, U.S.N. assist. It was published by The Survey in 1877. Scale 1:50,000. Covers the San Francisco Bay Area. The image inside the map neatline is georeferenced to the surface of the earth and fit to the California Zone III State Plane Coordinate System NAD83 (in Feet) (Fipszone 0403). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, railroads, drainage, land cover, selected buildings, towns, and more. Relief shown by hachures and spot heights; depths by sounding, shading, and contours. Includes inset map: Sub-sketch of entrance to San Francisco Bay (Scale 1:400,000), and inset views: View of the entrance to San Francisco Bay, Alcatraz N.E. by E. 1/2 (by compass 10 miles) -- View of the entrance to San Francisco Bay from Yerba Buena Id. -- View of the entrance to San Pablo Bay from near Angel Id. Also includes text and tables. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: San Francisco entrance, California, United States Coast and Geodetic Survey ; eng.d by J. Enthoffer, E.A. Maedel, J.J. Young, W.A. Thompson, H.M. Knight, A. Peterson, and J.G. Thompson; red.r dr.ng by A. Lindenkohl, C. Junken, E. Molkow, E.J. Sommer. It was published by U.S.C. & G.S., printed March 15, 1889, corrected to April 12, 1889. Scale 1:40,000. Covers the San Francisco Bay Area. The image inside the map neatline is georeferenced to the surface of the earth and fit to the California Zone III State Plane Coordinate System NAD83 (in Feet) (Fipszone 0403). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, railroads, drainage, land cover, selected buildings, towns, and more. Relief shown by contours and spot heights; depths by soundings. Includes notes, tables, and list of authorities. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan de Bordeaux. It was published ca. 1910. Scale 1:10,000. Covers La Gironde Rivière area, Bordeaux, France. This layer is image 1 of 2 total images of the two sheet source map, representing the southern portion of the map. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'European Datum 1950 UTM 30N' projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, built-up areas and selected buildings and industries, docks and wharves, and more. Includes manuscript additions. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Plan de Bordeaux. It was published ca. 1910. Scale 1:10,000. Covers La Gironde Rivière area, Bordeaux, France. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Map in French. The image inside the map neatline is georeferenced to the surface of the earth and fit to the 'European Datum 1950 UTM 30N' projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, built-up areas and selected buildings and industries, docks and wharves, and more. Includes manuscript additions. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
"February 1970."
Resumo:
Mode of access: Internet.
Resumo:
For nearly 100 years, the flotation plant metallurgist has often wondered what is happening 'beneath the froth'. To assist in unravelling this mystery, new technology has been developed as part of the Australian Mineral Industries Research Association (AMIRA) P9 project, to measure gas dispersion characteristics (such as gas hold-up, superficial gas velocity and bubble size) in industrial flotation cells. These measurements have been conducted in a large number of cells of different types and sizes by researchers from the Julius Kruttschnitt Mineral Research Centre (JKMRC) and JKTech. A large database has been developed and the contents of this database are described in this paper. Typical cell characterization measurements show a wide spread in values, even in the same cell types and sizes performing similar duties. In conventional flotation cells, the typical gas hold-up values range from 3% to 20%, bubble sizes range between I and 2 mm, and superficial gas velocity ranges from 1 to 2.5 cm/s. The ranges of cell characterization measurements given in this paper will enable plant personnel to compare their operation to other similar types of operations from around Australia and the rest of the world, giving opportunities for further improvement to flotation plant operations. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Measurements of area summation for luminance-modulated stimuli are typically confounded by variations in sensitivity across the retina. Recently we conducted a detailed analysis of sensitivity across the visual field (Baldwin et al, 2012) and found it to be well-described by a bilinear “witch’s hat” function: sensitivity declines rapidly over the first 8 cycles or so, more gently thereafter. Here we multiplied luminance-modulated stimuli (4 c/deg gratings and “Swiss cheeses”) by the inverse of the witch’s hat function to compensate for the inhomogeneity. This revealed summation functions that were straight lines (on double log axes) with a slope of -1/4 extending to ≥33 cycles, demonstrating fourth-root summation of contrast over a wider area than has previously been reported for the central retina. Fourth-root summation is typically attributed to probability summation, but recent studies have rejected that interpretation in favour of a noisy energy model that performs local square-law transduction of the signal, adds noise at each location of the target and then sums over signal area. Modelling shows our results to be consistent with a wide field application of such a contrast integrator. We reject a probability summation model, a quadratic model and a matched template model of our results under the assumptions of signal detection theory. We also reject the high threshold theory of contrast detection under the assumption of probability summation over area.
Resumo:
Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR (Q-PCR)-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250-350 cm. The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe2+ while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments. .
Resumo:
A Job Access project focuses on implementing new or expanded transportation services, targeted at filling transportation gaps and designed to transport welfare recipients and low-income individuals to and from jobs and other employment-related activities such as child care or training.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.