942 resultados para Wave model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With continuing advances in CMOS technology, feature sizes of modern Silicon chip-sets have gone down drastically over the past decade. In addition to desktops and laptop processors, a vast majority of these chips are also being deployed in mobile communication devices like smart-phones and tablets, where multiple radio-frequency integrated circuits (RFICs) must be integrated into one device to cater to a wide variety of applications such as Wi-Fi, Bluetooth, NFC, wireless charging, etc. While a small feature size enables higher integration levels leading to billions of transistors co-existing on a single chip, it also makes these Silicon ICs more susceptible to variations. A part of these variations can be attributed to the manufacturing process itself, particularly due to the stringent dimensional tolerances associated with the lithographic steps in modern processes. Additionally, RF or millimeter-wave communication chip-sets are subject to another type of variation caused by dynamic changes in the operating environment. Another bottleneck in the development of high performance RF/mm-wave Silicon ICs is the lack of accurate analog/high-frequency models in nanometer CMOS processes. This can be primarily attributed to the fact that most cutting edge processes are geared towards digital system implementation and as such there is little model-to-hardware correlation at RF frequencies.

All these issues have significantly degraded yield of high performance mm-wave and RF CMOS systems which often require multiple trial-and-error based Silicon validations, thereby incurring additional production costs. This dissertation proposes a low overhead technique which attempts to counter the detrimental effects of these variations, thereby improving both performance and yield of chips post fabrication in a systematic way. The key idea behind this approach is to dynamically sense the performance of the system, identify when a problem has occurred, and then actuate it back to its desired performance level through an intelligent on-chip optimization algorithm. We term this technique as self-healing drawing inspiration from nature's own way of healing the body against adverse environmental effects. To effectively demonstrate the efficacy of self-healing in CMOS systems, several representative examples are designed, fabricated, and measured against a variety of operating conditions.

We demonstrate a high-power mm-wave segmented power mixer array based transmitter architecture that is capable of generating high-speed and non-constant envelope modulations at higher efficiencies compared to existing conventional designs. We then incorporate several sensors and actuators into the design and demonstrate closed-loop healing against a wide variety of non-ideal operating conditions. We also demonstrate fully-integrated self-healing in the context of another mm-wave power amplifier, where measurements were performed across several chips, showing significant improvements in performance as well as reduced variability in the presence of process variations and load impedance mismatch, as well as catastrophic transistor failure. Finally, on the receiver side, a closed-loop self-healing phase synthesis scheme is demonstrated in conjunction with a wide-band voltage controlled oscillator to generate phase shifter local oscillator (LO) signals for a phased array receiver. The system is shown to heal against non-idealities in the LO signal generation and distribution, significantly reducing phase errors across a wide range of frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental studies were conducted to investigate the wave induced oscillations in an arbitrary shaped harbor with constant depth which is connected to the open-sea.

A theory termed the “arbitrary shaped harbor” theory is developed. The solution of the Helmholtz equation, ∇2f + k2f = 0, is formulated as an integral equation; an approximate method is employed to solve the integral equation by converting it to a matrix equation. The final solution is obtained by equating, at the harbor entrance, the wave amplitude and its normal derivative obtained from the solutions for the regions outside and inside the harbor.

Two special theories called the circular harbor theory and the rectangular harbor theory are also developed. The coordinates inside a circular and a rectangular harbor are separable; therefore, the solution for the region inside these harbors is obtained by the method of separation of variables. For the solution in the open-sea region, the same method is used as that employed for the arbitrary shaped harbor theory. The final solution is also obtained by a matching procedure similar to that used for the arbitrary shaped harbor theory. These two special theories provide a useful analytical check on the arbitrary shaped harbor theory.

Experiments were conducted to verify the theories in a wave basin 15 ft wide by 31 ft long with an effective system of wave energy dissipators mounted along the boundary to simulate the open-sea condition.

Four harbors were investigated theoretically and experimentally: circular harbors with a 10° opening and a 60° opening, a rectangular harbor, and a model of the East and West Basins of Long Beach Harbor located in Long Beach, California.

Theoretical solutions for these four harbors using the arbitrary shaped harbor theory were obtained. In addition, the theoretical solutions for the circular harbors and the rectangular harbor using the two special theories were also obtained. In each case, the theories have proven to agree well with the experimental data.

It is found that: (1) the resonant frequencies for a specific harbor are predicted correctly by the theory, although the amplification factors at resonance are somewhat larger than those found experimentally,(2) for the circular harbors, as the width of the harbor entrance increases, the amplification at resonance decreases, but the wave number bandwidth at resonance increases, (3) each peak in the curve of entrance velocity vs incident wave period corresponds to a distinct mode of resonant oscillation inside the harbor, thus the velocity at the harbor entrance appears to be a good indicator for resonance in harbors of complicated shape, (4) the results show that the present theory can be applied with confidence to prototype harbors with relatively uniform depth and reflective interior boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this investigation has been a theoretical and experimental understanding of ferromagnetic resonance phenomena in ferromagnetic thin films, and a consequent understanding of several important physical properties of these films. Significant results have been obtained by ferromagnetic resonance, hysteresis, torque magnetometer, He ion backscattering, and X-ray fluorescence measurements for nickel-iron alloy films.

Taking into account all relevant magnetic fields, including the applied, demagnetizing, effective anisotropy and exchange fields, the spin wave resonance condition applicable to the thin film geometry is presented. On the basis of the simple exchange interaction model it is concluded that the normal resonance modes of an ideal film are expected to be unpinned. The possibility of nonideality near the surface of a real film was considered by means of surface anisotropy field, inhomogeneity in demagnetizing field and inhomogeneity of magnetization models. Numerical results obtained for reasonable parameters in all cases show that they negligibly perturb the resonance fields and the higher order mode shapes from those of the unpinned modes of ideal films for thicknesses greater than 1000 Å. On the other hand for films thinner than 1000 Å the resonance field deviations can be significant even though the modes are very nearly unpinned. A previously unnoticed but important feature of all three models is that the interpretation of the first resonance mode as the uniform mode of an ideal film allows an accurate measurement of the average effective demagnetizing field over the film volume. Furthermore, it is demonstrated that it is possible to choose parameters which give indistinguishable predictions for all three models, making it difficult to uniquely ascertain the source of spin pinning in real films from resonance measurements alone.

Spin wave resonance measurements of 81% Ni-19% Fe coevaporated films 30 to 9000 Å thick, at frequencies from 1 to 8 GHz, at room temperature, and with the static magnetic field parallel and perpendicular to the film plane have been performed. A self-consistent analysis of the results for films thicker than 1000 Å, in which multiple excitations can be observed, shows for the first time that a unique value of exchange constant A can only be obtained by the use of unpinned mode assignments. This evidence and the resonance behavior of films thinner than 1000 Å strongly imply that the magnetization at the surfaces of permalloy films is very weakly pinned. However, resonance measurements alone cannot determine whether this pinning is due to a surface anisotropy, an inhomogeneous demagnetizing field or an inhomogeneous magnetization. The above analysis yields a value of 4πM=10,100 Oe and A = (1.03 ± .05) x 10-6 erg/cm for this alloy. The ability to obtain a unique value of A suggests that spin wave resonance can be used to accurately characterize the exchange interaction in a ferromagnet.

In an effort to resolve the ambiguity of the source of pinning of the magnetization, a correlation of the ratio of magnetic moment and X-ray film thickness with the value of effective demagnetizing field 4πNM as determined from resonance, for films 45 to 300 Å has been performed. The remarkable agreement of both quantities and a comparison with the predictions of five distinct models, strongly imply that the thickness dependence of both quantities is related to a thickness dependent average saturation magnetization, which is far below 10,100 Oe for very thin films. However, a series of complementary experiments shows that this large decrease of average saturation magnetization cannot be simply explained by either oxidation or interdiffusion processes. It can only be satisfactorily explained by an intrinsic decrease of the average saturation magnetization for very thin films, an effect which cannot be justified by any simple physical considerations.

Recognizing that this decrease of average saturation magnetization could be due to an oxidation process, a correlation of resonance measurements, He ion backscattering, X-ray fluorescence and torque magnetometer measurements, for films 40 to 3500 Å thick has been performed. On basis of these measurements it is unambiguously established that the oxide layer on the surface of purposefully oxidized 81% Ni-19% Fe evaporated films is predominantly Fe-oxide, and that in the oxidation process Fe atoms are removed from the bulk of the film to depths of thousands of angstroms. Extrapolation of results for pure Fe films indicates that the oxide is most likely α-Fe2O3. These conclusions are in agreement with results from old metallurgical studies of high temperature oxidation of bulk Fe and Ni-Fe alloys. However, X-ray fluorescence results for films oxidized at room temperature, show that although the preferential oxidation of Fe also takes place in these films, the extent of this process is by far too small to explain the large variation of their average saturation magnetization with film thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general solution is presented for water waves generated by an arbitrary movement of the bed (in space and time) in a two-dimensional fluid domain with a uniform depth. The integral solution which is developed is based on a linearized approximation to the complete (nonlinear) set of governing equations. The general solution is evaluated for the specific case of a uniform upthrust or downthrow of a block section of the bed; two time-displacement histories of the bed movement are considered.

An integral solution (based on a linear theory) is also developed for a three-dimensional fluid domain of uniform depth for a class of bed movements which are axially symmetric. The integral solution is evaluated for the specific case of a block upthrust or downthrow of a section of the bed, circular in planform, with a time-displacement history identical to one of the motions used in the two-dimensional model.

Since the linear solutions are developed from a linearized approximation of the complete nonlinear description of wave behavior, the applicability of these solutions is investigated. Two types of non-linear effects are found which limit the applicability of the linear theory: (1) large nonlinear effects which occur in the region of generation during the bed movement, and (2) the gradual growth of nonlinear effects during wave propagation.

A model of wave behavior, which includes, in an approximate manner, both linear and nonlinear effects is presented for computing wave profiles after the linear theory has become invalid due to the growth of nonlinearities during wave propagation.

An experimental program has been conducted to confirm both the linear model for the two-dimensional fluid domain and the strategy suggested for determining wave profiles during propagation after the linear theory becomes invalid. The effect of a more general time-displacement history of the moving bed than those employed in the theoretical models is also investigated experimentally.

The linear theory is found to accurately approximate the wave behavior in the region of generation whenever the total displacement of the bed is much less than the water depth. Curves are developed and confirmed by the experiments which predict gross features of the lead wave propagating from the region of generation once the values of certain nondimensional parameters (which characterize the generation process) are known. For example, the maximum amplitude of the lead wave propagating from the region of generation has been found to never exceed approximately one-half of the total bed displacement. The gross features of the tsunami resulting from the Alaskan earthquake of 27 March 1964 can be estimated from the results of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature-based vocoders, e.g., STRAIGHT, offer a way to manipulate the perceived characteristics of the speech signal in speech transformation and synthesis. For the harmonic model, which provide excellent perceived quality, features for the amplitude parameters already exist (e.g., Line Spectral Frequencies (LSF), Mel-Frequency Cepstral Coefficients (MFCC)). However, because of the wrapping of the phase parameters, phase features are more difficult to design. To randomize the phase of the harmonic model during synthesis, a voicing feature is commonly used, which distinguishes voiced and unvoiced segments. However, voice production allows smooth transitions between voiced/unvoiced states which makes voicing segmentation sometimes tricky to estimate. In this article, two-phase features are suggested to represent the phase of the harmonic model in a uniform way, without voicing decision. The synthesis quality of the resulting vocoder has been evaluated, using subjective listening tests, in the context of resynthesis, pitch scaling, and Hidden Markov Model (HMM)-based synthesis. The experiments show that the suggested signal model is comparable to STRAIGHT or even better in some scenarios. They also reveal some limitations of the harmonic framework itself in the case of high fundamental frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO) device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Method Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Results Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. Conclusion The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hurricanes can cause extensive damage to the coastline and coastal communities due to wind-generated waves and storm surge. While extensive modeling efforts have been conducted regarding storm surge, there is far less information about the effects of waves on these communities and ecosystems as storms make landfall. This report describes a preliminary use of NCCOS’ WEMo (Wave Exposure Model; Fonseca and Malhotra 2010) to compute the wind wave exposure within an area of approximately 25 miles radius from Beaufort, North Carolina for estuarine waters encompassing Bogue Sound, Back Sound and Core Sound during three hurricane landfall scenarios. The wind wave heights and energy of a site was a computation based on wind speed, direction, fetch and local bathymetry. We used our local area (Beaufort, North Carolina) as a test bed for this product because it is frequently impacted by hurricanes and we had confidence in the bathymetry data. Our test bed conditions were based on two recent Hurricanes that strongly affected this area. First, we used hurricane Isabel which made landfall near Beaufort in September 2003. Two hurricane simulations were run first by passing hurricane Isabel along its actual path (east of Beaufort) and second by passing the same storm to the west of Beaufort to show the potential effect of the reversed wind field. We then simulated impacts by a hurricane (Ophelia) with a different landfall track, which occurred in September of 2005. The simulations produced a geographic description of wave heights revealing the changing wind and wave exposure of the region as a consequence of landfall location and storm intensity. This highly conservative simulation (water levels were that of low tide) revealed that many inhabited and developed shorelines would receive wind waves for prolonged periods of time at heights far above that found during even the top few percent of non-hurricane events. The simulations also provided a sense for how rapidly conditions could transition from moderate to highly threatening; wave heights were shown to far exceed normal conditions often long before the main body of the storm arrived and importantly, at many locations that could impede and endanger late-fleeing vessels seeking safe harbor. When joined with other factors, such as storm surge and event duration, we anticipate that the WEMo forecasting tool will have significant use by local emergency agencies and the public to anticipate the relative exposure of their property arising as a function of storm location and may also be used by resource managers to examine the effects of storms in a quantitative fashion on local living marine resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wave contouring raft system is the outcome of ideas initiated and developed by Sir Christopher Cockerell from 1972 onwards. His objective was to develop a wave energy device which is within the bounds of current technology. It should consist of simple, relatively small units, amenable to quantity production, which would enable a power generating system to be built up and commissioned in stages according to needs and production capability. This thinking led to the investigation of chains of pontoons, hinged together so that the passage of a wave down the chain causes the pontoons to oscillate relative to one another. Energy is extracted from the sea by applying a torque about the hinges to damp the motion. The work has involved extensive model testing in wave tanks and the building and testing of a 3-unit 1/10 scale power generating installation in the Solent, as well as design studies for a full size installation for Atlantic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we engage a Lagrangian, particle-based CFD method, named Smoothed Particle Hydrodynamic (SPH) to study the solitary wave motion and its impact on coastal structures. Two-dimensional weakly compressible and incompressible SPH models were applied to simulate wave impacting on seawall and schematic coastal house. The results confirmed the accuracy of both models for predicting the wave surface profiles. The incompressible SPH model performed better in predicting the pressure field and impact loadings on coastal structures than the weakly compressible SPH model. The results are in qualitatively agreement with experimental results. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the hydrodynamic model and Shore Protection Manual (CERC - USA) we have calculated wave field characteristics in the typical wind conditions (wind velocity equal to 13m/s in the high frequency direction of the wind regime). Comparison between measured and calculated wave parameters was presented and these results were corresponded to each other. The following main wave characteristics were calculated: -Pattern of the refraction wave field. -Average wave height field. -Longshore current velocity field in surf zone. From distribution features of wave field characteristics in research areas, it could be summarized as following: - The formation of wave fields in the research areas was unequal because of their local difference of hydrometeorological conditions, river discharge, bottom relief… - At Cuadai (Dai mouth, Hoian) area in the N direction of incident wave field, wave has caused serious variation of the coastline. The coastline in the whole region, especially, at the south of the mouth was eroded and the foreland in the north of the mouth was deposited. - At Cai river mouth (Nhatrang) area in the E direction of incident wave field, wave has effected strongly and directly to the inshore and channel structure. - At Phanthiet bay area in the SW direction of incident wave field, wave has effected strongly to the whole shoreline from Da point to Ne point and caused serious erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the interaction of solitary waves (representative of tsunamis) with idealized flat-topped conical islands. The investigation is based on simulations produced by a numerical model that solves the two-dimensional Boussinesq-type equations of Madsen and Sørensen using a total variation diminishing Lax-Wendroff scheme. After verification against published laboratory data on solitary wave run-up at a single island, the numerical model is applied to study the maximum run-up at a pair of identical conical islands located at different spacings apart for various angles of wave attack. The predicted results indicate that the maximum run-up can be attenuated or enhanced according to the position of the second island because of wave refraction, diffraction, and reflection. It is also observed that the local wave height and hence run-up can be amplified at certain gap spacing between the islands, owing to the interference between the incident waves and the reflected waves between islands. © 2012 American Society of Mechanical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model for Dicke superradiance (SR) in diode lasers is proposed using the travelling wave method with a spatially resolved absorber and spectrally resolved gain. The role of electrode configuration and optical bandwidth are compared and contrasted as a route to enhance femtosecond pulse power. While pulse duration can be significantly reduced through careful absorber length specification, stability is degraded. However an increased spectral gain bandwidth of up to 150 nm is predicted to allow pulsewidth reductions of down to 10 fs and over 500-W peak power without further degradation in pulse stability. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modelling of the non-linear behaviour of MEMS oscillators is of interest to understand the effects of non-linearities on start-up, limit cycle behaviour and performance metrics such as output frequency and phase noise. This paper proposes an approach to integrate the non-linear modelling of the resonator, transducer and sustaining amplifier in a single numerical modelling environment so that their combined effects may be investigated simultaneously. The paper validates the proposed electrical model of the resonator through open-loop frequency response measurements on an electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. A square wave oscillator is constructed by embedding the same resonator as the primary frequency determining element. Measurements of output power and output frequency of the square wave oscillator as a function of resonator bias and driving voltage are consistent with model predictions ensuring that the model captures the essential non-linear behaviour of the resonator and the sustaining amplifier in a single mathematical equation. © 2012 IEEE.