955 resultados para Wave Run-up
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane. Original caption incorrectly states Bella is running for NY Senate.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
The Galway Bay wave energy test site promises to be a vital resource for wave energy researchers and developers. As part of the development of this site, a floating power system is being developed to provide power and data acquisition capabilities, including its function as a local grid connection, allowing for the connection of up to three wave energy converter devices. This work shows results from scaled physical model testing and numerical modelling of the floating power system and an oscillating water column connected with an umbilical. Results from this study will be used to influence further scaled testing as well as the full scale design and build of the floating power system in Galway Bay.
Resumo:
Utilization of graphene covered waveguide inserts to form tunable waveguide resonators is theoretically explained and rigorously investigated by means of full-wave numerical electromagnetic simulations. Instead of using graphene-based switching elements, the concept we propose incorporates graphene sheets as parts of a resonator. Electrostatic tuning of the graphene surface conductivity leads to changes in the electromagnetic field boundary conditions at the resonator edges and surfaces, thus producing an effect similar to varying the electrical length of a resonator. The presented outline of the theoretical background serves to give phenomenological insight into the resonator behavior, but it can also be used to develop customized software tools for design and optimization of graphene-based resonators and filters. Due to the linear dependence of the imaginary part of the graphene surface impedance on frequency, the proposed concept was expected to become effective for frequencies above 100 GHz, which is confirmed by the numerical simulations. A frequency range from 100 GHz up to 1100 GHz, where the rectangular waveguides are used, is considered. Simple, all-graphene-based resonators are analyzed first, to assess the achievable tunability and to check the performance throughout the considered frequency range. Graphene–metal combined waveguide resonators are proposed in order to preserve the excellent quality factors typical for the type of waveguide discontinuities used. Dependence of resonator properties on key design parameters is studied in detail. Dependence of resonator properties throughout the frequency range of interest is studied using eight different waveguide sections appropriate for different frequency intervals. Proposed resonators are aimed at applications in the submillimeter-wave spectral region, serving as the compact tunable components for the design of bandpass filters and other devices.
Resumo:
In cardiovascular disease the definition and the detection of the ECG parameters related to repolarization dynamics in post MI patients is still a crucial unmet need. In addition, the use of a 3D sensor in the implantable medical devices would be a crucial mean in the assessment or prediction of Heart Failure status, but the inclusion of such feature is limited by hardware and firmware constraints. The aim of this thesis is the definition of a reliable surrogate of the 500 Hz ECG signal to reach the aforementioned objective. To evaluate the worsening of reliability due to sampling frequency reduction on delineation performance, the signals have been consecutively down sampled by a factor 2, 4, 8 thus obtaining the ECG signals sampled at 250, 125 and 62.5 Hz, respectively. The final goal is the feasibility assessment of the detection of the fiducial points in order to translate those parameters into meaningful clinical parameter for Heart Failure prediction, such as T waves intervals heterogeneity and variability of areas under T waves. An experimental setting for data collection on healthy volunteers has been set up at the Bakken Research Center in Maastricht. A 16 – channel ambulatory system, provided by TMSI, has recorded the standard 12 – Leads ECG, two 3D accelerometers and a respiration sensor. The collection platform has been set up by the TMSI property software Polybench, the data analysis of such signals has been performed with Matlab. The main results of this study show that the 125 Hz sampling rate has demonstrated to be a good candidate for a reliable detection of fiducial points. T wave intervals proved to be consistently stable, even at 62.5 Hz. Further studies would be needed to provide a better comparison between sampling at 250 Hz and 125 Hz for areas under the T waves.
Resumo:
Chicken Run, an experimental project still in development, sees designers and scientists working together to explore ideas to improve poultry welfare in commercial facilities, applying user-centred design to all key stakeholders: farmer, consumer and chicken. Exploring various aspects of the chicken’s journey from egg to plate, the process has allowed researchers to better understand their needs and to maximise joined-up positive impact. The paper describes the ongoing process where Initial proposals including perches, bales and an app to enable consumers to make the right chicken purchase choices have been developed and tested. Co-authored by leaders of the design and scientific communities involved in the project, the paper describes the issues, design methods used, as well as some of the learning from the cross-disciplinary process. It also provides an update on progress of selected design ideas that are currently being developed with a commercial poultry farm, drawing out the challenges and successes encountered.
Resumo:
In this work, we present results from teleseismic P-wave receiver functions (PRFs) obtained in Portugal, Western Iberia. A dense seismic station deployment conducted between 2010 and 2012, in the scope of the WILAS project and covering the entire country, allowed the most spatially extensive probing on the bulk crustal seismic properties of Portugal up to date. The application of the H-kappa stacking algorithm to the PRFs enabled us to estimate the crustal thickness (H) and the average crustal ratio of the P- and S-waves velocities V (p)/V (s) (kappa) for the region. Observations of Moho conversions indicate that this interface is relatively smooth with the crustal thickness ranging between 24 and 34 km, with an average of 30 km. The highest V (p)/V (s) values are found on the Mesozoic-Cenozoic crust beneath the western and southern coastal domain of Portugal, whereas the lowest values correspond to Palaeozoic crust underlying the remaining part of the subject area. An average V (p)/V (s) is found to be 1.72, ranging 1.63-1.86 across the study area, indicating a predominantly felsic composition. Overall, we systematically observe a decrease of V (p)/V (s) with increasing crustal thickness. Taken as a whole, our results indicate a clear distinction between the geological zones of the Variscan Iberian Massif in Portugal, the overall shape of the anomalies conditioned by the shape of the Ibero-Armorican Arc, and associated Late Paleozoic suture zones, and the Meso-Cenozoic basin associated with Atlantic rifting stages. Thickened crust (30-34 km) across the studied region may be inherited from continental collision during the Paleozoic Variscan orogeny. An anomalous crustal thinning to around 28 km is observed beneath the central part of the Central Iberian Zone and the eastern part of South Portuguese Zone.
Resumo:
The effect of swell on wind wave growth has been a topic of active research for many years with inconsistent results. The details are often contradictory among investigations. Further more, there remain a variety of competing theories to explain these phenomena. In this research, we consider waves and wind and temperature data in the Persian Gulf (Busher region) in years 1995, 1996 and 1999. This study provides estimations of wave conditions and the atmosphere stability that has an influence on wind wave. Results are also compared with data that have been recorded by a buoy in Caspian Sea (Neka region) during 1989. In the second part of this work we estimate non- dimensional energy and non-dimensional peak frequencies as a function of the non- dimensional fetch and Bulk Richardson numbers for the Persian Gulf (Busher region).This results also agree well with similar results for the Caspian Sea. The acquired relations can be used to compute the wind wave parameters. Also the results for the Persian Gulf show that the relationship of non-dimensional energy to as a function of wave age is independent of presence of swell. Finally the WAM model was run for the Persian Gulf during 3-8 September of 2002. The results show that swell on the Persian Gulf reduces the energy density of wind waves by up to 10%, but the growth rate at peak frequency is only reduced by up to 4%, and the spectral peak frequency is increased by only 1%.
Resumo:
The present doctoral thesis studies the association between pre-colonial institutions and long-run development in Latin America. The thesis is organised as follows: Chapter 1 places the motivation of the thesis by underlying relevant contributions in the literature on long-run development. I then set out the main objective of the thesis, followed by a brief outline of it. In Chapter 2, I study the effects of pre-colonial institutions on present-day socioeconomic outcomes for Latin America. The main thesis of this chapter is that more advanced pre-colonial institutions relate to better socioeconomic outcomes today - principally, but not only, through their effects on the Amerindian population. I test such hypothesis with a dataset of 324 sub-national administrative units covering all mainland Latin American countries. The extensive range of controls covers factors such as climate, location, natural resources, colonial activities and pre-colonial characteristics - plus country fixed effects. Results strongly support the main thesis. In Chapter 3, I further analyse the association between pre-colonial institutions and present-day economic development in Latin America by using the historical ethnic homelands as my main unit of analysis. The main hypothesis is that ethnic homelands inhabited by more advanced ethnic groups -as measured by their levels of institutional complexity- relate to better economic development today. To track these long-run effects, I construct a new dataset by digitising historiographical maps allowing me to pinpoint the geospatial location of ethnic homelands as of the XVI century. As a result, 375 ethnic homelands are created. I then capture the levels of economic development at the ethnic homeland level by making use of alternative economic measures --satellite light density data. After controlling for country-specific characteristics and applying a large battery of geographical, locational, and historical factors, I found that the effects of pre-colonial institutions relate to a higher light density --as a proxy for economic activity- in ethnic homelands where more advanced ethnic groups lived. In Chapter 4, I explore a mechanism linking the persistence of pre-colonial institutions in Latin America over the long-run: Colonial and post-colonial strategies along with the ethnic political capacity worked in tandem allowing larger Amerindian groups to "support" the new political systems in ways that would benefit their respective ethnic groups as well as the population at large. This mechanism may have allowed the effects of pre-colonial institutions to influence socioeconomic development outcomes up to today. To shed lights on this mechanism, I combine the index of pre-colonial institutions prepared for the second chapter of the present thesis with individual-level survey data on people's attitudes. By controlling for key observable and unobservable country-specific characteristics, the main empirical results show that areas with a history of more advanced pre-colonial institutions increase the probability of individuals supporting present-day political institutions. Finally, in Chapter 5, I summarise the main findings of the thesis, and emphasise the key weaknesses of the study as well as potential avenues for future research.
Resumo:
Idealized ocean models are known to develop intrinsic multidecadal oscillations of the meridional overturning circulation (MOC). Here we explore the role of ocean–atmosphere interactions on this low-frequency variability. We use a coupled ocean–atmosphere model set up in a flat-bottom aquaplanet geometry with two meridional boundaries. The model is run at three different horizontal resolutions (4°, 2° and 1°) in both the ocean and atmosphere. At all resolutions, the MOC exhibits spontaneous variability on multidecadal timescales in the range 30–40 years, associated with the propagation of large-scale baroclinic Rossby waves across the Atlantic-like basin. The unstable region of growth of these waves through the long wave limit of baroclinic instability shifts from the eastern boundary at coarse resolution to the western boundary at higher resolution. Increasing the horizontal resolution enhances both intrinsic atmospheric variability and ocean–atmosphere interactions. In particular, the simulated atmospheric annular mode becomes significantly correlated to the MOC variability at 1° resolution. An ocean-only simulation conducted for this specific case underscores the disruptive but not essential influence of air–sea interactions on the low-frequency variability. This study demonstrates that an atmospheric annular mode leading MOC changes by about 2 years (as found at 1° resolution) does not imply that the low-frequency variability originates from air–sea interactions.