997 resultados para Wave Prediction
Resumo:
Part of the Next Wave MEMBRANE Project, Great Expectations draws attention to the parallels between our expectations of art and new technology to make the world a better place. The theme of the 2008 Next Wave Festival, ‘Closer Together’, refers to the way society is ― for the better or for the worse ― becoming increasingly connected by media and communication technologies. Sceptical of the acclaimed social achievements of new technologies, Boxcopy: Contemporary Art Space, a Brisbane-based artist-run initiative, explores the futility of human activities, including art production and consumption, with a collection of works created by young and emerging Brisbane artists. Works for this project include: Early machines such as the Commodore 64 were tape-based, and hence had their games distributed on ordinary cassettes (2009) by Tim Kerr & Extra Features (2008) by Tim Woodward; Spine (2008), Joseph Briekers; Whiteout (2008), Channon Goodwin; Explosive Revelations (2008), Daniel McKewen.
Resumo:
This paper examines the impact of allowing for stochastic volatility and jumps (SVJ) in a structural model on corporate credit risk prediction. The results from a simulation study verify the better performance of the SVJ model compared with the commonly used Merton model, and three sources are provided to explain the superiority. The empirical analysis on two real samples further ascertains the importance of recognizing the stochastic volatility and jumps by showing that the SVJ model decreases bias in spread prediction from the Merton model, and better explains the time variation in actual CDS spreads. The improvements are found particularly apparent in small firms or when the market is turbulent such as the recent financial crisis.
Resumo:
This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.
Resumo:
Complex behaviour of air flow in the buildings makes it difficult to predict. Consequently, architects use common strategies for designing buildings with adequate natural ventilation. However, each climate needs specific strategies and there are not many heuristics for subtropical climate in literature. Furthermore, most of these common strategies are based on low-rise buildings and their performance for high-rise buildings might be different due to the increase of the wind speed with increase in the height. This study uses Computational Fluid Dynamics (CFD) to evaluate these rules of thumb for natural ventilation for multi-residential buildings in subtropical climate. Four design proposals for multi-residential towers with natural ventilation which were produced in intensive two days charrette were evaluated using CFD. The results show that all the buildings reach acceptable level of wind speed in living areas and poor amount of air flow in sleeping areas.
Resumo:
Objectives Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Design Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Methods Eleven children aged 3–6 years (mean age = 4.8 ± 0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Results Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Conclusions Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children.
Resumo:
In this essay, I present a reflective and generative analysis of Business Process Management research, in which I analyze process management and the surrounding research program from the viewpoint of a theoretical paradigm embracing analytical, empirical, explanatory and design elements. I argue that this view not only reconciles different perceptions of BPM and different research streams, but that it also informs ways in which the BPM research program could develop into a much richer, more inclusive and overall more significant body of work than it has to date. I define three perspectives on a BPM research agenda, give several examples of exciting existing research, and offer key opportunities for further research that can (a) strengthen the core of BPM, (b) generate novel theory from BPM in relevant and topical big issue domains, and (c) explore more rigorously and comprehensively the protective belt of BPM assumptions that much of the present research abides by. The essay ends with some recommendations for continuing the debate about what constitutes BPM and some suggestions for how future research in this area might be carried out.
Resumo:
Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable-the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic surfaces, respectively. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.