983 resultados para Walking frequency
Resumo:
In order to understand the role of translational modes in the orientational relaxation in dense dipolar liquids, we have carried out a computer ''experiment'' where a random dipolar lattice was generated by quenching only the translational motion of the molecules of an equilibrated dipolar liquid. The lattice so generated was orientationally disordered and positionally random. The detailed study of orientational relaxation in this random dipolar lattice revealed interesting differences from those of the corresponding dipolar liquid. In particular, we found that the relaxation of the collective orientational correlation functions at the intermediate wave numbers was markedly slower at the long times for the random lattice than that of the liquid. This verified the important role of the translational modes in this regime, as predicted recently by the molecular theories. The single-particle orientational correlation functions of the random lattice also decayed significantly slowly at long times, compared to those of the dipolar liquid.
Resumo:
An electromagnetically coupled feed arrangement is proposed for simultaneously exciting multiple concentric ring antennas for multi-frequency operation. This has a multi-layer dielectric configuration in which a transmission line is embedded below the layer containing radiating rings. Energy coupled to these rings from the line beneath is optimised by suitably adjusting the location and dimensions of stubs on the line. It has been shown that the resonant frequencies of these rings do not change as several of these single-frequency antennas are combined to form a multi-resonant antenna. Furthermore, all radiators are forced to operate at their primary mode and some harmonics of the lower resonant frequency rings appearing within the frequency range are suppressed when combined. The experimental prototype antenna has three resonant frequencies at which it has good radiation characteristics.
Resumo:
Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type ate commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.
Resumo:
A large population-based survey of persons with multiple sclerosis (MS) and their caregivers was conducted in Ontario using self-completed mailed questionnaires. The objectives included describing assistance arrangements, needs, and use of and satisfaction with services, and comparing perceptions of persons with MS and their caregivers. Response rates were 83% and 72% for those with MS and caregivers, respectively. Based on 697 respondents with MS whose mean age is 48 years, 70% are female, and 75% are married. While 24% experience no mobility restrictions, the majority require some type of aid or a wheelchair for getting around. Among 345 caregivers, who have been providing care for 9 years on average, the majority are spouses. Caregivers report providing more frequent care than do persons with MS report receiving it, particularly for the following activities of daily living: eating, meal preparation, and help with personal finances. Caregivers also report assistance of longer duration per day than do care recipients with MS. Frequency and duration of assistance are positively associated with increased MS symptom severity and reduced mobility. Generally there is no rural-urban disparity in service provision, utilization or satisfaction, and although there is a wide range of service utilization, satisfaction is consistently high. Respite care is rarely used by caregivers. Use of several services is positively associated with increased severity of MS symptoms and reduced mobility. Assistance arrangements and use of services, each from the point of view of persons with MS and their caregivers, must be taken into account in efforts to prolong home care and to postpone early institutionalization of persons with MS.
Resumo:
This article develops a simple analytical expression that relates ion axial secular frequency to field aberration in ion trap mass spectrometers. Hexapole and octopole aberrations have been considered in the present computations. The equation of motion of the ions in a pseudopotential well with these superpositions has the form of a Duffing-like equation and a perturbation method has been used to obtain the expression for ion secular frequency as a function of field imperfections. The expression indicates that the frequency shift is sensitive to the sign of the octopole superposition and insensitive to the sign of the hexapole superposition. Further, for weak multipole superposition of the same magnitude, octopole superposition causes a larger frequency shift in comparison to hexapole superposition.
Resumo:
Time-frequency analysis of various simulated and experimental signals due to elastic wave scattering from damage are performed using wavelet transform (WT) and Hilbert-Huang transform (HHT) and their performances are compared in context of quantifying the damages. Spectral finite element method is employed for numerical simulation of wave scattering. An analytical study is carried out to study the effects of higher-order damage parameters on the reflected wave from a damage. Based on this study, error bounds are computed for the signals in the spectral and also on the time-frequency domains. It is shown how such an error bound can provide all estimate of error in the modelling of wave propagation in structure with damage. Measures of damage based on WT and HHT is derived to quantify the damage information hidden in the signal. The aim of this study is to obtain detailed insights into the problem of (1) identifying localised damages (2) dispersion of multifrequency non-stationary signals after they interact with various types of damage and (3) quantifying the damages. Sensitivity analysis of the signal due to scattered wave based on time-frequency representation helps to correlate the variation of damage index measures with respect to the damage parameters like damage size and material degradation factors.
Resumo:
Foot plantar fascia is an important foot tissue in stabilizing the longitudinal arch of human foot. Direct measurement to monitor the mechanical situation of plantar fascia at human locomotion is difficult. The purpose of this study was to construct a three-dimensional finite element model of the foot to calculate the internal stress/strain value of plantar fascia during different stage of gait. The simulated stress distribution of plantar fascia was the lowest at heel-strike, which concentrated on the medial side of calcaneal tubercle. The peak stress of plantar fascia was appeared at push-off, and the value is more than 5 times of the heel-strike position. Current FE model was able to explore the plantar fascia tension trend at the main sub-phases of foot. More detailed fascia model and intrinsic muscle forces could be developed in the further study.
Resumo:
The primary objective of this paper is to study the use of medical image-based finite element (FE) modelling in subjectspecific midsole design and optimisation for heel pressure reduction using a midsole plug under the calcaneus area (UCA). Plugs with different relative dimensions to the size of the calcaneus of the subject have been incorporated in the heel region of the midsole. The FE foot model was validated by comparing the numerically predicted plantar pressure with biomechanical tests conducted on the same subject. For each UCA midsole plug design, the effect of material properties and plug thicknesses on the plantar pressure distribution and peak pressure level during the heel strike phase of normal walking was systematically studied. The results showed that the UCA midsole insert could effectively modify the pressure distribution, and its effect is directly associated with the ratio of the plug dimension to the size of the calcaneus bone of the subject. A medium hardness plug with a size of 95% of the calcaneus has achieved the best performance for relieving the peak pressure in comparison with the pressure level for a solid midsole without a plug, whereas a smaller plug with a size of 65% of the calcaneus insert with a very soft material showed minimum beneficial effect for the pressure relief.
Resumo:
The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.
Resumo:
The system equations of a collisionless, unmagnetized plasma, contained in a box where a high frequency (HF) electric field is incident, are solved in the electrostatic approximation. The surface modes of the plasma in the semi-infinite and box geometry are investigated. In thi high frequency limit, the mode frequencies are not significantly changed by the HF field but their group velocities can be quite different. Two long wavelength low frequency modes, which are not excited in the absence of HF field, are found. These modes are true surface modes (decaying on one wavelength from the surface) unlike the only low frequency ion acoustic mode in the zero field case. In the short wavelength limit the low frequency mode occurs at omega i/ square root 2, omega i being the ion plasma frequency, as a result similar to the case of no HF field.
Resumo:
The extended recruitment season for short-lived species such as prawns biases the estimation of growth parameters from length-frequency data when conventional methods are used. We propose a simple method for overcoming this bias given a time series of length-frequency data. The difficulties arising from extended recruitment are eliminated by predicting the growth of the succeeding samples and the length increments of the recruits in previous samples. This method requires that some maximum size at recruitment can be specified. The advantages of this multiple length-frequency method are: it is simple to use; it requires only three parameters; no specific distributions need to be assumed; and the actual seasonal recruitment pattern does not have to be specified. We illustrate the new method with length-frequency data on the tiger prawn Penaeus esculentus from the north-western Gulf of Carpentaria, Australia.
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L-infinity. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.
Resumo:
- Study Design Controlled laboratory study - Objective To investigate the effect of a 12–mm in–shoe orthotic heel lift on Achilles tendon loading during shod walking using transmission–mode ultrasonography. - Background Orthotic heel lifts are thought to lower tension in the Achilles tendon but evidence for this effect is equivocal. - Methods The propagation speed of ultrasound, which is governed by the elastic modulus and density of tendon and is proportional to the tensile load to which it is exposed, was measured in the right Achilles tendon of twelve recreationally–active males during shod treadmill walking at matched speeds (3.4±0.7 km/h), with and without addition of a heel lift. Vertical ground reaction force and spatiotemporal gait parameters were simultaneously recorded. Data were acquired at 100Hz during 10s of steady–state walking. Statistical comparisons were made using paired t–tests (α=.05). - Results Ultrasound transmission speed in the Achilles tendon was characterized by two maxima (P1, P2) and minima (M1, M2) during walking. Addition of a heel lift to footwear resulted in a 2% increase and 2% decrease in the first vertical ground reaction force peak and the local minimum, respectively (P<.05). Peak ultrasonic velocity in the Achilles tendon (P1, P2, M2) was significantly lower with addition of an orthotic heel lift (P<.05). - Conclusions Peak ultrasound transmission speed in the Achilles tendon was lower with the addition of a 12–mm orthotic heel lift, indicating the heel lift reduced tensile load in the Achilles tendon, thereby counteracting the effect of footwear. These findings support the addition of orthotic heel lifts to footwear in the rehabilitation of Achilles tendon disorders where management aims to lower tension within the tendon. - Level of Evidence Therapy, level 2a
Resumo:
Measurement of tendon loading patterns during gait is important for understanding the pathogenesis of tendon "overuse" injury. Given that the speed of propagation of ultrasound in tendon is proportional to the applied load, this study used a noninvasive ultrasonic transmission technique to measure axial ultrasonic velocity in the right Achilles tendon of 27 healthy adults (11 females and 16 males; age, 26 ± 9 years; height, 1.73 ± 0.07 m; weight, 70.6 ± 21.2 kg), walking at self-selected speed (1.1 ± 0.1 m/s), and running at fixed slow speed (2 m/s) on a treadmill. Synchronous measures of ankle kinematics, spatiotemporal gait parameters, and vertical ground reaction forces were simultaneously measured. Slow running was associated with significantly higher cadence, shorter step length, but greater range of ankle movement, higher magnitude and rate of vertical ground reaction force, and higher ultrasonic velocity in the tendon than walking (P < 0.05). Ultrasonic velocity in the Achilles tendon was highly reproducible during walking and slow running (mean within-subject coefficient of variation < 2%). Ultrasonic maxima (P1, P2) and minima (M1, M2) were significantly higher and occurred earlier in the gait cycle (P1, M1, and M2) during running than walking (P < 0.05). Slow running was associated with higher and earlier peaks in loading of the Achilles tendon than walking.