925 resultados para WPM culture medium


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A chemical process optimization and control is strongly correlated with the quantity of information can be obtained from the system. In biotechnological processes, where the transforming agent is a cell, many variables can interfere in the process, leading to changes in the microorganism metabolism and affecting the quantity and quality of final product. Therefore, the continuously monitoring of the variables that interfere in the bioprocess, is crucial to be able to act on certain variables of the system, keeping it under desirable operational conditions and control. In general, during a fermentation process, the analysis of important parameters such as substrate, product and cells concentration, is done off-line, requiring sampling, pretreatment and analytical procedures. Therefore, this steps require a significant run time and the use of high purity chemical reagents to be done. In order to implement a real time monitoring system for a benchtop bioreactor, these study was conducted in two steps: (i) The development of a software that presents a communication interface between bioreactor and computer based on data acquisition and process variables data recording, that are pH, temperature, dissolved oxygen, level, foam level, agitation frequency and the input setpoints of the operational parameters of the bioreactor control unit; (ii) The development of an analytical method using near-infrared spectroscopy (NIRS) in order to enable substrate, products and cells concentration monitoring during a fermentation process for ethanol production using the yeast Saccharomyces cerevisiae. Three fermentation runs were conducted (F1, F2 and F3) that were monitored by NIRS and subsequent sampling for analytical characterization. The data obtained were used for calibration and validation, where pre-treatments combined or not with smoothing filters were applied to spectrum data. The most satisfactory results were obtained when the calibration models were constructed from real samples of culture medium removed from the fermentation assays F1, F2 and F3, showing that the analytical method based on NIRS can be used as a fast and effective method to quantify cells, substrate and products concentration what enables the implementation of insitu real time monitoring of fermentation processes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The production of enzymes by microorganisms using organic residues is important and it can be associated with several applications such as food and chemical industries and so on. The objective of this work is the production of CMCase, Xylanase, Avicelase and FPase enzymes by solid state fermentation (SSF) using as substrates: bagasse of coconut and dried cashew stem. The microorganisms employed are Penicillium chrysogenum and an isolated fungus from the coconut bark (Aspergillus fumigatus). Through the factorial design methodology and response surface analysis it was possible to study the influence of the humidity and pH. For Penicillium chrysogenum and the isolated fungus, the coconut bagasse was used as culture medium. In another fermentation, it was used the mixture of coconut bagasse and cashew stem. Fermentations were conducted using only the coconut bagasse as substrate in cultures with Penicillium chrysogenum fungus and the isolated one. A mixture with 50% of coconut and 50% of cashew stem was employed only for Penicillium chrysogenum fungus, the cultivation conditions were: 120 hours at 30 °C in BOD, changing humidity and pH values. In order to check the influence of the variables: humidity and pH, a 2 2 factorial experimental design was developed, and then two factors with two levels for each factor and three repetitions at the central point. The levels of the independent variables used in ascending order (-1, 0, +1), to humidity, 66%, 70.5% and 75% and pH 3, 5 and 7, respectively. The software STATISTICA TM (version 7.0, StatSoft, Inc.) was used to calculate the main effects of the variables and their interactions. The response surface methodology was used to optimize the conditions of the SSF. A chemical and a physic-chemical characterization of the coconut bagasse have determined the composition of cellulose (%) = 39.09; Hemicellulose (%) = 23.80, Total Lignin (%) = 36.22 and Pectin (%) = 1.64. To the characterization of cashew stem, the values were cellulose (g) = 15.91 Hemicellulose (%) = 16.77, Total Lignin (%) = 30.04 and Pectin (%) = 15.24. The results indicate the potential of the materials as substrate for semisolid fermentation enzyme production. The two microorganisms used are presented as good producers of cellulases. The results showed the potential of the fungus in the production of CMCase enzyme, with a maximum of 0.282 UI/mL and the Avicelase enzyme the maximum value ranged from 0.018 to 0.020 UI/ mL, using only coconut bagasse as substrate. The Penicillium chrysogenum fungus has showed the best results for CMCase = 0.294 UI/mL, FPase = 0.058 UI/mL, Avicelase = 0.010 UI/mL and Xylanase = 0.644 UI/ mL enzyme, using coconut bagasse and cashew stem as substrates. The Penicllium chrysogenum fungus showed enzymatic activities using only the coconut as substrate for CMCase = 0.233 UI/mL, FPase = 0.031 to 0.032 UI/ mL, Avicelase = 0.018 to 0.020 UI/mL and Xylanase = 0.735 UI/ mL. Thus, it can be concluded that the used organisms and substrates have offered potential for enzyme production processes in a semi-solid cultivation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The obtaining of the oligosaccharides from chitosanase, has showed interest of the pharmaceutical area in the last years due their countless functional properties. Although, the great challenge founded out is how to keep a constant and efficient production. The alternative proposed by this present work was to study the viability to develop an integrated technology, with reduced costs. The strategy used was the obtaining of the oligomers through enzymatic hydrolysis using chitosanolitic enzymes obtained straight from the fermented broth, eliminating this way the phases involved in the enzymes purification. The two chitosanases producing strains chosen for the work, Paenibacillus chitinolyticus and Paenibacillus ehimensis, were evaluated according to the behavior in the culture medium with simple sugar and in relation to the pH medium variations. The culture medium for the chitosanases induction and production was developed through addition of soluble chitosan as carbon source. The soluble chitosan was obtained using hydrochloric acid solution 0.1 M and afterwards neutralization with NaOH 10 M. The enzymatic complexes were obtained from induction process in culture medium with 0.2% of soluble chitosan. The enzymes production was verified soon after the consumption of the simple sugars by the microorganisms and the maximum chitosanolitic activity obtained in the fermented broth by Paenibacillus chitinolyticus was 249 U.L-1 and by Paenibacillus ehimensis was 495U.L-1. These two enzymatic complexes showed stability when stored at 20°C for about 91 days. The enzymes in the fermented broth by Paenibacillus chitinolyticus, when exposed at temperature of 55°C and pH 6.0, where the activity is maximum, showed 50% lost of activity after 3 hours Meanwhile, for the complex produced by Paenibacillus ehimensis, after 6 days of exposure, it was detected 100% of the activity. The chito-oligosaccharides obtained by the hydrolysis of a 1% chitosan solution, using the enzymatic complex produced by Paenibacillus chitinolyticus showed larger quantity after 9 hours hydrolysis and using the complex produced by Paenibacillus ehimensis after 20 minutes was observed the chito-ligosacharides with polymerization degree between 3 and 6 units. Evaluating these results, it was verified that the production of chitosan-oligosaccharides is possible, using a simultaneous process

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolic flux analysis (MFA) is a powerful tool for analyzing cellular metabolism. In order to control the growth conditions of a specific organism, it is important to have a complete understanding of its MFA. This would allowed us to improve the processes for obtaining products of interest to human and also to understand how to manipulate the genome of a cell, allowing optimization process for genetic engineering. Streptomyces olindensis ICB20 is a promising producer of the antibiotic cosmomycin, a powerful antitumor drug. Several Brazilian researchers groups have been developing studies in order to optimize cosmomycin production in bioreactors. However, to the best of our knowledge, nothing has been done on metabolic fluxes analysis field. Therefore, the aim of this work is to identify several factors that can affect the metabolism of Streptomyces olindensis ICB20, through the metabolic flux analysis. As a result, the production of the secondary metabolite, cosmomycin, can be increased. To achieve this goal, a metabolic model was developed which simulates a distribution of internal cellular fluxes based on the knowledge of metabolic pathways, its interconnections, as well as the constraints of microorganism under study. The validity of the proposed model was verified by comparing the computational data obtained by the model with the experimental data obtained from the literature. Based on the analysis of intracellular fluxes, obtained by the model, an optimal culture medium was proposed. In addition, some key points of the metabolism of Streptomyces olindensis were identified, aiming to direct its metabolism to a greater cosmomycin production. In this sense it was found that by increasing the concentration of yeast extract, the culture medium could be optimized. Furthermore, the inhibition of the biosynthesis of fatty acids was found to be a interesting strategy for genetic manipulation. Based on the metabolic model, one of the optimized medium conditions was experimentally tested in order to demonstrate in vitro what was obtained in silico. It was found that by increasing the concentration of yeast extract in the culture medium would induce to an increase of the cosmomycin production

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two botryosphaerans, exopolysaccharides (EPS) secreted by the ascomyceteous fungus Botryosphaeria rhodina, when grown on sucrose and fructose as sole carbon sources, were structurally compared after their isolation from the culture medium. Both EPS were submitted to trypsin digestion, and eluted as a single peak on gel filtration. Total acid hydrolysis yielded only glucose, and data from methylation analysis and Smith degradation indicated that both EPS constituted a main chain of glucopyranosyl beta(1 -> 3) linkages substituted at O-6. The products obtained after partial acid hydrolysis demonstrated side chains consisting of glucosyl- and gentiobiosyl- linked beta(1 -> 6) residues. C-13-NMR spectroscopy studies showed that all glucosidic linkages were of the beta-configuration. The carbon source affected the side chain structures of botryosphaeran but not the main chain makeup. Sucrose produced less branching (21%) than fructose (31%). (c) 2005 Published by Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, the GPD2 gene from Saccharomyces cerevisiae, which codifies for the enzyme glycerol-3-phosphate dehydrogenase (GPDH), was cloned from the pPICZ-alpha expression vector and used with the purpose of inducing the extracellular expression of the glycerol-3-phosphate dehydrogenase under the control of the methanol-regulated AOX promoter. The presence of the GPD2 insert was confirmed by PCR analysis. Pichia pastoris X-33 (Mut(+)) was transformed with linearized plasmids by electroporation and transformants were selected on YPDS plates containing 100 mu g/mL of zeocin. Several clones were selected and the functionality of this enzyme obtained in a culture medium was assayed. Among the mutants tested, one exhibited 3.1 x 10(-2) U/mg of maximal activity. Maximal enzyme activity was achieved at 6 days of growth. Medium composition and pre-induction osmotic stress influenced protein production. Pre-induction osmotic stress (culturing cells in medium with either 0.35 M sodium chloride or 1.0 M sorbitol for 4h prior to induction) led to an increase in cell growth with sorbitol and resulted in a significant increase in GPDH productivity with sodium chloride in 24h of induction approximately fivefold greater than under standard conditions (without pre-induction). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A superfície interna das bisnagas fabricadas com alumínio não revestido e revestido com resina epóxi, utilizadas para acondicionar cremes, pomadas, géis, etc., foram avaliadas quimicamente e por métodos microbiológicos correlacionados com a aderência de microrganismos. A prova da porosidade e da resistência à remoção da resina foi observada por meio do microscópio eletrônico de varredura (Topcon FM300) e estereoscópio Leica (MZ12) acoplado a Sistema de Digitalização de Imagens. Para avaliar a ação dos microrganismos foram utilizados corpos-de-prova esterilizados (discos de 10mm de diâmetro), imersos em caldo Mueller Hinton (Difco) e colocados em tubos de polipropileno com tampa de rosca (Corning). Foram inoculados tubos com meio de cultura para cada uma das suspensões bacterianas (10(9)UFC/mL) de Streptococcus agalactiae, Staphylococcus aureus, Acinetobacter lwoffii e Candida albicans, incubados a 37°C, sob agitação constante durante 12 dias. O meio de cultura era trocado a cada 3 dias. Após esse período, os corpos-de prova foram removidos, processados e observados em microscópio eletrônico de varredura JEOL-JSM (T330A). A observação por meio do microscopio eletrônico de varredura mostrou a aderência e a formação de biofilme sobre a superfície de alumínio não revestido e revestido com resina epóxi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estudou-se o comportamento biológico e histopatológico de uma cepa genuínamente mariliense de Trypanosoma cruzi, isolada em 1997 através de xenodiagnóstico artificial. Vinte e cinco camundongos swiss foram infectados intraperitonealmente, sendo 11 utilizados para a realização da curva parasitêmica e observação da morfologia dos tripomastigotas e 14 foram sacrificados após o 17, 23, 30, 60 e 180 dias pós-infecção e coletados coração, esôfago, fígado, cólon, e músculo esquelético (fragmento da coxa direita) para análise histopatológica. Cultura em meio LIT foi realizada para análise de DNA. Os resultados mostraram predomínio de formas largas, baixa parasitemia com picos médios de 860 tripomastigotas/5mil de sangue ao redor do 20º dia de infecção. Nenhum camundongo morreu na fase aguda da infecção. Exame histopatológico mostrou poucos ninhos de amastigotas em coração, raros em músculo esquelético e cólon com discreto processo inflamatório. Comparada com a cepa Y, que foi isolada de uma paciente da mesma região, notamos diferentes características biológicas e comportamentais, porém a análise de DNA as coloca no mesmo grupo, demonstrando a proximidade dessas cepas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mancha bacteriana do maracujá, causada pela bactéria Xanthomonas axonopodis pv. passiflorae, ocorre em todas as regiões produtoras do País, sendo responsável por grandes perdas econômicas na cultura do maracujazeiro-amarelo. O presente trabalho teve como objetivos testar a eficiência de argila silicatada na inibição da bactéria X. axonopodis pv. passiflorae in vitro e no controle preventivo e curativo da mancha bacteriana em mudas de maracujazeiro-amarelo. A argila silicatada foi adicionada ao meio de cultura batata-dextrose-ágar fundente, nas concentrações de 0,0; 0,5; 1,0; 1,5 e 2,0%; vertido em placas de Petri. Após resfriamento do meio, repicou-se a suspensão bacteriana (10(7) UFC.mL-1) com uma alça, incubando-se as placas a 28 °C por três dias, quando se avaliou o crescimento bacteriano. Posteriormente, o produto, nas mesmas concentrações citadas, foi pulverizado em mudas de maracujá 'Afruvec' de forma preventiva ou curativa. A inoculação da bactéria foi realizada através de pulverização foliar da suspensão bacteriana (10(7) UFC.mL-1), 24 h antes ou após os tratamentos curativo e preventivo, respectivamente. A severidade da doença foi avaliada com auxílio de uma escala diagramática nas quatro primeiras folhas verdadeiras contadas de baixo para cima. Nas concentrações avaliadas, a argila silicatada inibiu a bactéria in vitro e os sintomas da mancha bacteriana no tratamento curativo, enquanto no tratamento preventivo, controle significativo foi obtido a partir de 1,0% de argila silicatada. Com base nestes resultados, a argila silicada pode ser recomendada, na concentração de 1,0-2,0%, para o controle da mancha bacteriana do maracujazeiro em pulverizações foliares.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bacterial spot in yellow passion fruit plants, caused by the bacteria Xanthomonas axonopodis pv. passiflorae, occurs in all producing areas of the country, and is responsible for great economic losses in the culture of passion fruit. This study aimed to test the efficiency of the silicate clay in the inhibition of the bacteria Xanthomonas axonopodis pv. passiflorae in vitro, and in both preventive and curative control of the bacterial spot in seedlings of yellow passion fruit plants. The silicate clay was added to the growth medium at concentrations of. 0.5, 1.0, 1.5 and 2.0%, placed in Petri dishes. After the culture medium was cooler, the bacterial suspension was inoculates (10(7) UFC.mL(-1)) with a handle, and left incubating at 28 degrees C for three days, and then the bacterial growth was evaluated. Subsequently, the product at the same concentrations above was sprayed on seedlings of 'Afruvec' passion fruit, as preventive or curative. The inoculation of the bacteria was made by foliar spraying of bacterial suspension (10(7) ufc.mL(-1)), 24 hours before or after the curative and preventive treatments, respectively. The severity of the disease was measured comparing each four true leaves from bottom up, with a diagrammatic scale. In the concentrations evaluated, the silicate clay inhibited both bacteria in vitro and symptoms of bacterial spot in the curative treatment. In preventive treatment, significant results were obtained using more than 1.0% of clay silicates. Based on these results, the clay silicate can be recommended, the concentration of 1.0-2.0% for the control of bacterial spot of passion fruit plants, in foliar sprays.