940 resultados para Vector quantization
Resumo:
[ES]En las sociedades modernas existe una creciente preocupación por el aumento de la incidencia de la enfermedad renal crónica. Debido a la deficiencia de donantes de órganos y al elevado coste del tratamiento de diálisis, existe la necesidad de desarrollar nuevos tratamientos para estos pacientes. La medicina regenerativa basada en la aplicación de células iPS es una opción prometedora para el tratamiento de esta enfermedad. Sin embargo, la falta de conocimientos sobre el estado pluripotencial de las células y sobre su proceso de diferenciación, así como las limitaciones derivadas del propio procedimiento de reprogramación, impiden su aplicación clínica en un futuro inmediato. Para que se convierta en realidad, numerosas investigaciones se están llevando a cabo con el objetivo de mejorar el procedimiento y hacerlo adecuado para su aplicación clínica. En este trabajo se propone un método que permitiría obtener células iPS a partir de células mesangiales mediante la transfección con un vector no integrativo, el virus Sendai, portador de los genes Oct3/4, Sox2, Klf4 y c-Myc. Al tratarse de un vector no integrativo, se minimizaría el efecto del proceso de reprogramación sobre la estabilidad del genoma celular. Además, en este proyecto se estudiará la capacidad de las células iPS obtenidas para diferenciarse en células progenitoras de podocitos que puedan ser aplicadas específicamente en terapias regenerativas para enfermos renales crónicos.
Resumo:
A parallel strategy for solving multidimensional tridiagonal equations is investigated in this paper. We present in detail an improved version of single parallel partition (SPP) algorithm in conjunction with message vectorization, which aggregates several communication messages into one to reduce the communication cost. We show the resulting block SPP can achieve good speedup for a wide range of message vector length (MVL), especially when the number of grid points in the divided direction is large. Instead of only using the largest possible MVL, we adopt numerical tests and modeling analysis to determine an optimal MVL so that significant improvement in speedup can be obtained.
Resumo:
It has long been recognized that many direct parallel tridiagonal solvers are only efficient for solving a single tridiagonal equation of large sizes, and they become inefficient when naively used in a three-dimensional ADI solver. In order to improve the parallel efficiency of an ADI solver using a direct parallel solver, we implement the single parallel partition (SPP) algorithm in conjunction with message vectorization, which aggregates several communication messages into one to reduce the communication costs. The measured performances show that the longest allowable message vector length (MVL) is not necessarily the best choice. To understand this observation and optimize the performance, we propose an improved model that takes the cache effect into consideration. The optimal MVL for achieving the best performance is shown to depend on number of processors and grid sizes. Similar dependence of the optimal MVL is also found for the popular block pipelined method.
Resumo:
A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether “quantization commutes with reduction.” Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kähler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kähler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds.
In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kähler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or “admissible”, values of momentum.
We first propose a reduction procedure for the prequantum geometric structures that “covers” symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems.
We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces.
Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees with its usual decomposition by irreducible representations, and so proves that quantization and reduction do indeed commute in this context.
A significant omission from the proof is the construction of an inner product on the space of polarized sections, and a discussion of its behavior under reduction. In the concluding chapter of the thesis, we suggest some ideas for future work in this direction.