343 resultados para Vancomycin
Resumo:
There has been a rapid rise in the emergence of multi-drug-resistant pathogens in the past 10 to 15 yr and some bacteria are now resistant to most antimicrobial agents. Antibiotic use is very restricted on Swiss organic dairy farms, and a purely prophylactic use, such as for dry cow mastitis prevention, is forbidden. A low prevalence of antibiotic resistance in organic farms can be expected compared with conventional farms because the bacteria are infrequently or not exposed to antibiotics. The occurrence of antibiotic resistance was compared between mastitis pathogens (Staphylococcus aureus, nonaureus staphylococci, Streptococcus dysgalactiae, Streptococcus uberis) from farms with organic and conventional dairy production. Clear differences in the percentage of antibiotic resistance were mainly species-related, but did not differ significantly between isolates from cows kept on organic and conventional farms, except for Streptococcus uberis, which exhibited significantly more single resistances (compared with no resistance) when isolated from cows kept on organic farms (6/10 isolates) than on conventional farms (0/5 isolates). Different percentages were found (albeit not statistically significant) in resistance to ceftiofur, erythromycin, clindamycin, enrofloxacin, chloramphenicol, penicillin, oxacillin, gentamicin, tetracycline, and quinupristin-dalfopristin, but, importantly, none of the strains was resistant to amoxicillin-clavulanic acid or vancomycin. Multidrug resistance was rarely encountered. The frequency of antibiotic resistance in organic farms, in which the use of antibiotics must be very restricted, was not different from conventional farms, and was contrary to expectation. The antibiotic resistance status needs to be monitored in organic farms as well as conventional farms and production factors related to the absence of reduced antibiotic resistance in organic farms need to be evaluated.
Resumo:
The penetration of telavancin was 2% into inflamed meninges and ca. 1 per thousand into noninflamed meninges after two intravenous injections (30 mg/kg of body weight). In experimental meningitis, telavancin was significantly superior to vancomycin combined with ceftriaxone against a penicillin-resistant pneumococcal strain. Against a methicillin-sensitive staphylococcal strain, telavancin was slightly but not significantly superior to vancomycin.
Resumo:
Until now, studies confirming the safety of glycopeptide restriction in the empirical treatment of prolonged fever and neutropenia included only nine children. In an open-label observational study, the use of teicoplanin in paediatric oncology patients was investigated. A period of unrestricted use (2001-2003) was compared with a second period (2004) following implementation of a restrictive treatment guideline. Empirical first-line treatment consisted of piperacillin/tazobactam; in 2004, fosfomycin was added after 72 h as the second-line combination instead of teicoplanin. In total, 213 episodes (n=163 in 2001-2003; n=50 in 2004) managed with teicoplanin or fosfomycin (only 2004) were eligible. Empirical treatment of fever of unknown origin with teicoplanin was reduced by 97%. In 2004, the mean length of stay was 0.4 days shorter, no infection-related death occurred and no vancomycin-resistant enterococci were detected. Restriction of empirical glycopeptides is safe in paediatric cancer patients after first-line treatment with piperacillin/tazobactam. Fosfomycin appears to offer a feasible and cost-saving alternative in second-line combination therapy.
Resumo:
The treatment of pneumococcal meningitis remains a major challenge, as reflected by the continued high morbidity and case fatality of the disease. The worldwide increase of penicillin-resistant pneumococci and more recently cephalosporin- and vancomycin-tolerant pneumococci has jeopardised the efficacy of standard treatments based on extended spectrum cephalosporins alone or in combination with vancomycin. This review provides a summary of newly developed antibiotics tested in the rabbit meningitis model. In particular, newer beta-lactam monotherapies (cefepime, meropenem, ertapenem), recently developed quinolones (garenoxacin, gemifloxacin, gatifloxacin, moxifloxacin) and a lipopeptide antibiotic (daptomycin) are discussed. A special emphasis is placed on the potential role of combination treatments with some of the new compounds, which are of interest based on the background of increasing resistance problems due to their often synergistic activity in the rabbit model of pneumococcal meningitis.
Resumo:
The penetration of ertapenem, a new carbapenem with a long half-life, reached 7.1 and 2.4% into inflamed and noninflamed meninges, respectively. Ertapenem had excellent antibacterial activity in the treatment of experimental meningitis due to penicillin-sensitive and -resistant pneumococci, leading to a decrease of 0.69 +/- 0.17 and 0.59 +/- 0.22 log(10) CFU/ml x h, respectively, in the viable cell counts in the cerebrospinal fluid. The efficacy of ertapenem was comparable to that of standard regimens (ceftriaxone monotherapy against the penicillin-sensitive strain and ceftriaxone combined with vancomycin against the penicillin-resistant strain). In vitro, ertapenem in concentrations above the MIC was highly bactericidal against both strains. Even against a penicillin- and quinolone-resistant mutant, ertapenem had similar bactericidal activity in vitro.
Resumo:
In experimental rabbit meningitis, gemifloxacin penetrated inflamed meninges well (22 to 33%) and produced excellent bactericidal activity (change in log(10) [Deltalog(10)] CFU/ml/h, -0.68 +/- 0.30 [mean and standard deviation]), even superior to that of the standard regimen of ceftriaxone plus vancomycin (-0.49 +/- 0.09 deltalog(10) CFU/ml/h), in the treatment of meningitis due to a penicillin-resistant pneumococcal strain (MIC, 4 mg/liter). Even against a penicillin- and quinolone-resistant strain, gemifloxacin showed good bactericidal activity (-0.48 +/- 0.16 deltalog(10) CFU/ml/h). The excellent antibacterial activity of gemifloxacin was also confirmed by time-kill assays over 8 h in vitro.
Resumo:
In experimental rabbit meningitis, cefepime given at a dose of 100 mg/kg was associated with concentrations in the cerebrospinal fluid of between 5.3 and 10 mg/L and a bactericidal activity of -0.61 +/- 0.24 Delta log(10) cfu/mL x h, similar to the standard regimen of ceftriaxone combined with vancomycin (-0.58 +/- 0.14 Delta log(10) cfu/mL x h) in the treatment of meningitis due to a penicillin- and quinolone-resistant pneumococcal mutant strain (MIC 4 mg/L). Compared with the penicillin-resistant parental strain, the penicillin- and quinolone-resistant mutant was killed more slowly by cefepime and ceftriaxone in time-killing assays in vitro over 8 h.
Resumo:
BMS 284756 penetrated well into inflamed meninges (44% +/- 11%) and produced good bactericidal activity (-0.82 +/- 0.22 Delta log(10) CFU/ml. h) in the treatment of experimental meningitis in rabbits due to a penicillin-sensitive strain. BMS 284756 monotherapy had a greater potency than the standard regimen of ceftriaxone and vancomycin (-0.49 +/- 0.08 Delta log(10) CFU/ml. h) against a penicillin-resistant strain (MIC, 4 mg/liter). Even against a penicillin- and quinolone-resistant strain, BMS 284756 showed good bactericidal activity (-0.52 +/- 0.12 Delta log(10) CFU/ml. h). The antibacterial activity of BMS 284756 was confirmed by time-killing assays over 8 h in vitro.
Resumo:
Gatifloxacin penetrated well into cerebrospinal fluid (CSF) (49 +/- 11%), measured by comparison of AUC(CSF)/AUC(serum), and showed good bactericidal activity (leading to a decrease of 0.75 +/- 0.17 log10 cfu/mL/h) in the treatment of experimental meningitis in rabbits caused by a penicillin-resistant pneumococcal strain (MIC 4 mg/L). It was significantly more effective than the standard regimen, ceftriaxone with vancomycin, which led to a decrease of 0.53 +/- 0.17 log10 cfu/mL/h. The addition of cefepime to gatifloxacin slightly improved the killing rates (giving a decrease of 0.84 +/- 0.14 log10 cfu/mL/h). In vitro, synergy was demonstrated between cefepime and gatifloxacin by the chequerboard method (fractional inhibitory concentration index = 0.5) and by viable counts over 8 h.
Resumo:
Linezolid, a new oxazolidinone antibiotic, showed good penetration (38+/-4%) into the meninges of rabbits with levels in the CSF ranging from 9.5 to 1.8 mg/L after two i.v. injections (20 mg/kg). Linezolid was clearly less effective than ceftriaxone against a penicillin-sensitive pneumococcal strain. Against a penicillin-resistant strain, linezolid had slightly inferior killing rates compared with the standard regimen (ceftriaxone combined with vancomycin). In vitro, linezolid was marginally bactericidal at concentrations above the MIC (5 x and 10 x MIC).
Resumo:
Grepafloxacin, a new fluoroquinolone, produced bactericidal activity comparable to that of vancomycin and ceftriaxone in the treatment in rabbits of meningitis caused by a pneumococcal strain highly resistant to penicillin (MIC 4 mg/L) (triangle uplog(10) cfu/mL*h for grepafloxacin, -0.32 +/- 0.15; dose, 15 mg/kg iv; triangle uplog(10) cfu/mL*h for vancomycin, -0.39 +/- 0.18; dose, 2 x 20 mg/kg iv; triangle uplog(10) cfu/mL*h for ceftriaxone, -0.32 +/- 0. 12; dose, 125 mg/kg iv). Higher doses of grepafloxacin (30 mg/kg and 2 x 50 mg/kg) did not improve the killing rates. The combination of grepafloxacin with vancomycin was not significantly superior to monotherapies (P > 0.05). In vitro, grepafloxacin was bactericidal at concentrations above the MIC. Using concentrations around the MIC, addition of vancomycin to grepafloxacin showed synergic activity.
Resumo:
The bactericidal activities of monotherapy with trovafloxacin (-0.37 +/- 0.15 Delta log(10) CFU/ml. h), vancomycin (-0.32 +/- 0.12 Delta log(10) CFU/ml. h), and ceftriaxone (-0.36 +/- 0.19 Delta log(10) CFU/ml. h) for the treatment of experimental meningitis in rabbits due to a clinical penicillin-resistant pneumococcal strain (MIC, 4 mg/liter) were similar. The combination of ceftriaxone with trovafloxacin considerably improved the killing rates (-0.67 +/- 0.16 Delta log(10) CFU/ml. h) and was slightly superior to ceftriaxone with vancomycin (killing rate, -0.53 +/- 0. 22 Delta log(10) CFU/ml. h), the regimen most commonly used in clinical practice. In vitro, synergy was demonstrated between ceftriaxone and trovafloxacin by the checkerboard method (fractional inhibitory concentration index, 0.5) and by time-killing assays over 8 h.
Resumo:
The new fluoroquinolone trovafloxacin was tested against a ciprofloxacin-sensitive, methicillin-resistant Staphylococcus aureus strain in the rabbit model of endocarditis. Trovafloxacin was more effective than vancomycin (CFU/g of vegetation, 2.65 +/- 1.87 versus 4.54 +/- 2.80 [mean +/- standard deviation]; P < 0.05) or ampicillin-sulbactam plus rifampin (4.9 +/- 1.1 CFU/g). The addition of ampicillin-sulbactam to trovafloxacin tended to reduce titers further.
Resumo:
The continuous increase of resistant pathogens causing meningitis has limited the efficacy of standard therapeutic regimens. Due to their excellent activity in vitro and their good penetration into the cerebrospinal fluid (CSF), fluoroquinolones appear promising for the treatment of meningitis caused by gram-negative microorganisms, ie, Neisseria meningitidis and nosocomial gram-negative bacilli. The newer fluoroquinolones (moxifloxacin, gemifloxacin, gatifloxacin, and garenoxacin) have excellent activity against gram-positive microorganisms. Studies in animal models and limited clinical data indicate that they may play a future role in the treatment of pneumococcal meningitis. Analysis of pharmacodynamic parameters suggests that CSF concentrations that produce a C(peak)/minimal bactericidal concentration (MBC) ratio of at least 5 and concentrations above the MBC during the entire dosing interval are a prerequisite for maximal bactericidal activity in meningitis. Of interest, newer fluoroquinolones act synergistically with vancomycin and beta-lactam antibiotics (ceftriaxone, cefotaxime, meropenem) against penicillin-resistant pneumococci in experimental rabbit meningitis, potentially providing a new therapeutic strategy. Clinical trials are needed to further explore the usefulness of quinolones as single agents or in combination with other drugs in the therapy of pneumococcal meningitis.
Resumo:
The therapeutic efficacy of pefloxacin in experimental endocarditis caused by methicillin-susceptible or methicillin-resistant Staphylococcus aureus was evaluated. In rabbits infected with a methicillin-susceptible strain, 4 days of pefloxacin therapy significantly reduced both the number of bacteria per gram of vegetation and the mortality rate compared with untreated controls, and pefloxacin was equivalent to cephalothin. Pefloxacin was also as effective as vancomycin in reducing vegetation titers and mortality rate in animals with endocarditis caused by a methicillin-resistant strain. These results suggest that pefloxacin may be an effective agent in the therapy of serious infections caused by either methicillin-susceptible or -resistant strains of S. aureus.