994 resultados para Urban solid residues landfills


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The five installations operated by the Department of Defense (DoD) in the Front Range region of Colorado do not meet the DoD non-hazardous solid waste diversion goal of 40 percent, further impacting landfills and generating greenhouse gases. This applied capstone project identifies and evaluates best management practices of a Materials Recovery Facility (MRF), qualitatively and quantitatively, to increase solid waste diversion at a DoD MRF. An environmental benefits model quantified the externalities of increasing solid waste diversion at the installations. By implementing best management practices at a MRF, the DoD would divert an additional 1,400 tons of solid waste per year, resulting in the equivalent of 1,502,567 gallons of gasoline being saved, among many benefits presented in this capstone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Contract number 68-03-0315."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Volumes 2 and 3, which are compilations of the experimental data collected, will be available through the National Technical Information Service, Springfield, Virginia 22151."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cities involved are: Paterson, Clifton, Passaic and Wayne, N. J.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"SW-868"--Cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Description based on: 1996 [10th annual report].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notwithstanding the increasingly fragmented organizational relationships within Colombo's urban governance system, the cooperative nature of stakeholder relationships lends a high level of coherence to the overall system. Since 1995, Colombo's solid waste management system has been characterized by the increased role of the private sector, community-based organizations and NGOs. Whilst the increasingly fragmented nature of this system exhibits some deeply ingrained problems, there are also a number of positives associated with the increased role of civil society actors and, in particular, the informal sector. Reforming regulatory frameworks so as to integrate some of the social norms that are integral to the lives of the majority of urban residents will contribute to regulatory frameworks being considerably more enforceable than is currently the case. Such reform requires that institutional and regulatory frameworks need to be flexible enough to adapt to the changing social, political and economic context. In the Colombo case, effective cooperation between public sector and civil society stakeholders illustrates that adaptive institutional arrangements grounded in pragmatism are feasible. The challenge that arises is to translate these institutional arrangements into adaptive regulatory frameworks - something that would require a significant mind shift on the part of planners and urban managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pesticides and herbicides including organochlorine compounds have had extensive current and past application by Queensland's intensive coastal agriculture industry as web as for a wide range of domestic, public health and agricultural purposes in urban areas, The persistent nature of these types of compounds together with possible continued illegal use of banned organochlorine compounds raises the potential for continued long-term chronic exposure to plants and animals of the Great Barrier Reef. Sediment and seagrass samples were collected from 16 intertidal and 25 subtidal sampling sites between Torres Strait and Townsville, near Mackay and Gladstone, and in Hervey and Moreton Bays in 1997 and 1998 and analysed for pesticide and herbicide residues. Low levels of atrazine (0.1-0.3 mug kg(-1)), diuron (0.2-10.1 mug kg(-1)), lindane (0.08-0.19 mug kg(-1)), dieldrin (0.05-0.37 mug kg(-1)), DDT (0.05-0.26 mug kg(-1)), and DDE (0.05-0.26 mug kg(-1)) were detected in sediments and/or seagrasses. Contaminants were mainly detected in samples collected along the high rainfall, tropical coast between Townsville and Port Douglas and in Moreton Bay. Of the contaminants detected, the herbicide diuron is of most concern as the concentrations detected have some potential to impact local seagrass communities, (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was carried for an EC supported project that aimed to produce ethyl levulinate as a diesel miscible biofuel from biomass by acid hydrolysis. The objective of this research was to explore thermal conversion technologies to recover further diesel miscible biofuels and/or other valuable products from the remaining solid acid hydrolysis residues (AHR). AHR consists of mainly lignin and humins and contains up to 80% of the original energy in the biomass. Fast pyrolysis and pyrolytic gasification of this low volatile content AHR was unsuccessful. However, successful air gasification of AHR gave a low heating value gas for use in engines for power or heat with the aim of producing all the utility requirements in any commercial implementation of the ethyl levulinate production process. In addition, successful fast pyrolysis of the original biomass gave organic liquid yields of up to 63.9 wt.% (dry feed basis) comparable to results achieved using a standard hardwood. The fast pyrolysis liquid can be used as a fuel or upgraded to biofuels. A novel molybdenum carbide catalyst was tested in fast pyrolysis to explore the potential for upgrading. Although there was no deoxygenation, some bio-oil properties were improved including viscosity, pH and homogeneity through decreasing sugars and increasing furanics and phenolics. AHR gasification was explored in a batch gasifier with a comparison with the original biomass. Refractory and low volatile content AHR gave relatively low gas yields (74.21 wt.%), low tar yields (5.27 wt.%) and high solid yields (20.52 wt.%). Air gasification gave gas heating values of around 5MJ/NM3, which is a typical value, but limitations of the equipment available restricted the extent of process and product analysis. In order to improve robustness of AHR powder for screw feeding into gasifiers, a new densification technique was developed based on mixing powder with bio-oil and curing the mixture at 150°C to polymerise the bio-oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research presented in this thesis was developed as part of DIBANET, an EC funded project aiming to develop an energetically self-sustainable process for the production of diesel miscible biofuels (i.e. ethyl levulinate) via acid hydrolysis of selected biomass feedstocks. Three thermal conversion technologies, pyrolysis, gasification and combustion, were evaluated in the present work with the aim of recovering the energy stored in the acid hydrolysis solid residue (AHR). Mainly consisting of lignin and humins, the AHR can contain up to 80% of the energy in the original feedstock. Pyrolysis of AHR proved unsatisfactory, so attention focussed on gasification and combustion with the aim of producing heat and/or power to supply the energy demanded by the ethyl levulinate production process. A thermal processing rig consisting on a Laminar Entrained Flow Reactor (LEFR) equipped with solid and liquid collection and online gas analysis systems was designed and built to explore pyrolysis, gasification and air-blown combustion of AHR. Maximum liquid yield for pyrolysis of AHR was 30wt% with volatile conversion of 80%. Gas yield for AHR gasification was 78wt%, with 8wt% tar yields and conversion of volatiles close to 100%. 90wt% of the AHR was transformed into gas by combustion, with volatile conversions above 90%. 5volO2%-95vol%N2 gasification resulted in a nitrogen diluted, low heating value gas (2MJ/m3). Steam and oxygen-blown gasification of AHR were additionally investigated in a batch gasifier at KTH in Sweden. Steam promoted the formation of hydrogen (25vol%) and methane (14vol%) improving the gas heating value to 10MJ/m3, below the typical for steam gasification due to equipment limitations. Arrhenius kinetic parameters were calculated using data collected with the LEFR to provide reaction rate information for process design and optimisation. Activation energy (EA) and pre-exponential factor (ko in s-1) for pyrolysis (EA=80kJ/mol, lnko=14), gasification (EA=69kJ/mol, lnko=13) and combustion (EA=42kJ/mol, lnko=8) were calculated after linearly fitting the data using the random pore model. Kinetic parameters for pyrolysis and combustion were also determined by dynamic thermogravimetric analysis (TGA), including studies of the original biomass feedstocks for comparison. Results obtained by differential and integral isoconversional methods for activation energy determination were compared. Activation energy calculated by the Vyazovkin method was 103-204kJ/mol for pyrolysis of untreated feedstocks and 185-387kJ/mol for AHRs. Combustion activation energy was 138-163kJ/mol for biomass and 119-158 for AHRs. The non-linear least squares method was used to determine reaction model and pre-exponential factor. Pyrolysis and combustion of biomass were best modelled by a combination of third order reaction and 3 dimensional diffusion models, while AHR decomposed following the third order reaction for pyrolysis and the 3 dimensional diffusion for combustion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peculiarities of Roman architecture, town planning, and landscape architecture are visible in many of the empire's remaining cities. However, evaluation of the landscapes; and analysis of the urban fabric, spatial compositions, and the concepts and characteristics of its open spaces are missing for Jerash (Gerasa in antiquity) in Jordan. Those missing elements will be discussed in this work, as an example of an urban arrangement that survived through different civilizations in history.^ To address the characteristics of the exterior spaces in Jerash, a study of the major concepts of planning in Classical Antiquity will be conducted, followed by a comparative analysis of the quality of space and architectural composition in Jerash. Through intensive investigation of data available for the area under study, the historical method used in this paper illustrates the uniqueness of the site's urban morphology and architectural disposition.^ An analysis will be performed to compare the design composition of the landscape, urban fabric, and open space of Jerash as a provincial Roman city with its existing excavated remains. Such an analysis will provide new information about the roles these factors and their relationships played in determining the design layout of the city. Information, such as the relationship between void and solid, space shaping, the ground and ceiling, the composition of city elements, the ancient landscapes, and the relationship between the land and architecture, will be acquired.^ A computer simulation for a portion of the city will be developed to enable researchers, students and citizens interested in Jordan's past to visualize more clearly what the city looked like in its prime. Such a simulation could result in the revival of the old city of Jerash and help promote its tourism. ^