728 resultados para Tunable WDM photodetecteur


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform a full numerical characterisation of half-open cavity random DFB Raman fibre laser amplifier schemes for WDM transmission in terms of signal power variation, noise and nonlinear impairments, showcasing the excellent potential of this scheme to provide amplification for DWDM transmission with very low gain variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental results for wavelength-division multiplexed (WDM) transmission performance using unbalanced proportions of 1s and 0s in pseudo-random bit sequence (PRBS) data. This investigation simulates the effect of local, in time, data unbalancing which occurs in some coding systems such as forward error correction when extra bits are added to the WDM data stream. We show that such local unbalancing, which would practically give a time-dependent error-rate, can be employed to improve the legacy long-haul WDM system performance if the system is allowed to operate in the nonlinear power region. We use a recirculating loop to simulate a long-haul fibre system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electro-optical transceivers can be implemented employing all-analog signal processing in order to achieve low values of power consumption and latency. This paper shows that the spectral efficiency of such solutions can be increased by combining orthogonal multicarrier techniques and off-the-shelf microwave components. A real-time 108-Gbit/s experiment was performed emulating a wavelength division multiplexing (WDM) system composed of five optical channels. The optical carriers were provided by an externally injected gain switched optical frequency comb. Each optical channel transmitted a 21.6-Gbit/s orthogonal subcarrier multiplexing (SCM) signal that was modulated and demodulated in the electrical domain without the requirement for digital signal processing. The net data rate remained higher than 100 Gbit/s after taking into account forward error correction overheads. The use of orthogonally overlapping subchannels achieves an unprecedented spectral efficiency in all-analog real-time broadband WDM/SCM links.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated that a random distributed feedback based on the Rayleigh scattering provides very flat power-versus-wavelength characteristics both in tunable and multiwavelength ultra-long fibre lasers. © 2011 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunable photonic elements at the surface of an optical fiber with piezoelectric core are proposed and analyzed theoretically. These elements are based on whispering gallery modes whose propagation along the fiber is fully controlled by nanoscale variation of the effective fiber radius, which can be tuned by means of a piezoelectric actuator embedded into the core. The developed theory allows one to express the introduced effective radius variation through the shape of the actuator and the voltage applied to it. In particular, the designs of a miniature tunable optical delay line and a miniature tunable dispersion compensator are presented. The potential application of the suggested model to the design of a miniature optical buffer is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10μm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ∼18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 μs with a low power consumption of ∼11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon photonics is a very promising technology for future low-cost high-bandwidth optical telecommunication applications down to the chip level. This is due to the high degree of integration, high optical bandwidth and large speed coupled with the development of a wide range of integrated optical functions. Silicon-based microring resonators are a key building block that can be used to realize many optical functions such as switching, multiplexing, demultiplaxing and detection of optical wave. The ability to tune the resonances of the microring resonators is highly desirable in many of their applications. In this work, the study and application of a thermally wavelength-tunable photonic switch based on silicon microring resonator is presented. Devices with 10µm diameter were systematically studied and used in the design. Its resonance wavelength was tuned by thermally induced refractive index change using a designed local micro-heater. While thermo-optic tuning has moderate speed compared with electro-optic and all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength tunable range can be realized. The device design was verified and optimized by optical and thermal simulations. The fabrication and characterization of the device was also implemented. The microring resonator has a measured FSR of ~18 nm, FWHM in the range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved with the switch, which enables dense wavelength division multiplexing (DWDM) with a channel space of 0.2nm. The time response of the switch was tested on the order of 10 us with a low power consumption of ~11.9mW/nm. The measured results are in agreement with the simulations. Important applications using the tunable photonic switch were demonstrated in this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using multiple switches with a common bus waveguide. The results suggest the feasibility of on-chip DWDM for the development of large-scale integrated photonics. Using the tunable switch for output wavelength control, a fiber laser was demonstrated with Erbium-doped fiber amplifier as the gain media. For the first time, this approach integrated on-chip silicon photonic wavelength control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con la presente tesi viene esaminato un metodo per modificare la frequenza di risonanza di trasduttori piezoelettrici mediante applicazione di carichi elettrici esterni. L'elaborato inizia con la presentazione dei cristalli utilizzati nel lavoro di tesi, concentrandosi sul processo di fabbricazione di un bimorph cantilever impiegato come convertitore elettromeccanico di energia, la cui frequenza di risonanza è modellizzata analiticamente mediante la legge di Newton e il modello di Euler-Bernoulli. Su tale struttura vengono condotte misure mediante shaker elettrodinamico e analizzatore d'impedenza, ai fini di giusticare il modello analitico presentato. Con lo scopo di sincronizzare la frequenza di risonanza del cantilever con la vibrazione dell'ambiente per massimizzare la potenza disponibile, viene proposto un algoritmo MPPT secondo l'approccio Perturba e Osserva (P&O), al quale è fornita in ingresso la tensione efficace di un layer di materiale piezoelettrico. Valutare la sua risposta in tensione, presenta dei limiti applicativi che hanno portato a prendere in considerazione un approccio totalmente diff�erente, basato sullo sfasamento tra la tensione di un trasduttore piezoelettrico e il segnale di accelerazione impiegato come eccitazione. Misure sperimentali sono state condotte con l'obiettivo di validare l'efficacia di quest'ultimo approccio qualora si voglia sincronizzare la frequenza di risonanza dei piezo con segnali di vibrazione reali.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements V.B., N.K.G., and E.A. contributed with conception and experimental design. V.B. performed the experiments. V.B., R.H., A.G., and R.M.M. carried out analysis and interpretation of data. V.B., R.H., A.G., and E.A. wrote the manuscript. V.B. and R.H. contributed equally to this work. V.B. acknowledges funding by SPP 1420 of the German Science Foundation DFG. E.A., N.K.G., and R.H. acknowledge funding from the European Research Council under the European Union/ERC Advanced Grant “Switch2Stick,” Agreement No. 340929.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an ultra-compact, room-Temperature, continuous-wave, broadly-Tunable dual-wavelength InAs/GaAs quantum-dot external-cavity diode laser in the spectral region between 1150 nm and 1301 nm with maximum output power of 280 mW. This laser source generating two modes with tunable difference-frequency (300 GHz-30 THz) has a great potential to replace commonly used bulky lasers for THz generation in photomixer devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a novel optically tunable dispersion compensator based on pumping a chirped grating made in Er/Yb co-doped fiber. The dispersion was tuned from 900 to 1900ps/nm and also from-600 to-950ps/nm in the experiment. © 2010 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the possibility to use a fractional order of poling period of nonlinear crystal waveguides for tunable second harmonic generation. This approach allows one to extend wavelength coverage in the visible spectral range by frequency doubling in a single crystal waveguide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a framework for estimating the quality of transmission (QoT) of a new lightpath before it is established, as well as for calculating the expected degradation it will cause to existing lightpaths. The framework correlates the QoT metrics of established lightpaths, which are readily available from coherent optical receivers that can be extended to serve as optical performance monitors. Past similar studies used only space (routing) information and thus neglected spectrum, while they focused on oldgeneration noncoherent networks. The proposed framework accounts for correlation in both the space and spectrum domains and can be applied to both fixed-grid wavelength division multiplexing (WDM) and elastic optical networks. It is based on a graph transformation that exposes and models the interference between spectrum-neighboring channels. Our results indicate that our QoT estimates are very close to the actual performance data, that is, to having perfect knowledge of the physical layer. The proposed estimation framework is shown to provide up to 4 × 10-2 lower pre-forward error correction bit error ratio (BER) compared to theworst-case interference scenario,which overestimates the BER. The higher accuracy can be harvested when lightpaths are provisioned with low margins; our results showed up to 47% reduction in required regenerators, a substantial savings in equipment cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first WDM numerical characterisation of crosstalk growth in cascaded Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPAs). A cascade of ten RA-FOPAs results in ∼13dB lower crosstalk than the equivalent cascade of conventional FOPAs.