972 resultados para Transaction level modeling
Resumo:
This paper presents an integrated model for an offshore wind turbine taking into consideration a contribution for the marine wave and wind speed with perturbations influences on the power quality of current injected into the electric grid. The paper deals with the simulation of one floating offshore wind turbine equipped with a permanent magnet synchronous generator, and a two-level converter connected to an onshore electric grid. The use of discrete mass modeling is accessed in order to reveal by computing the total harmonic distortion on how the perturbations of the captured energy are attenuated at the electric grid injection point. Two torque actions are considered for the three-mass modeling, the aerodynamic on the flexible part and on the rigid part of the blades. Also, a torque due to the influence of marine waves in deep water is considered. Proportional integral fractional-order control supports the control strategy. A comparison between the drive train models is presented.
Resumo:
This paper presents an integrated model for an offshore wind energy system taking into consideration a contribution for the marine wave and wind speed with perturbations influences on the power quality of current injected into the electric grid. The paper deals with the simulation of one floating offshore wind turbine equipped with a PMSG and a two-level converter connected to an onshore electric grid. The use of discrete mass modeling is accessed in order to reveal by computing the THD on how the perturbations of the captured energy are attenuated at the electric grid injection point. Two torque actions are considered for the three-mass modeling, the aerodynamic on the flexible part and on the rigid part of the blades. Also, a torque due to the influence of marine waves in deep water is considered. PI fractional-order control supports the control strategy. A comparison between the drive train models is presented.
Resumo:
This paper is on modeling and simulation for an offshore wind system equipped with a semi-submersible floating platform, a wind turbine, a permanent magnet synchronous generator, a multiple point clamped four level or five level full-power converter, a submarine cable and a second order filter. The drive train is modeled by three mass model considering the resistant stiffness torque, structure and tower in deep water due to the moving surface elevation. The system control uses PWM by space vector modulation associated with sliding mode and proportional integral controllers. The electric energy is injected into the electric grid either by an alternated current link or by a direct current link. The model is intend to be a useful tool for unveil the behavior and performance of the offshore wind system, especially for the multiple point clamped full-power converter, under normal operation or under malfunctions.
Resumo:
The coastal ocean is a complex environment with extremely dynamic processes that require a high-resolution and cross-scale modeling approach in which all hydrodynamic fields and scales are considered integral parts of the overall system. In the last decade, unstructured-grid models have been used to advance in seamless modeling between scales. On the other hand, the data assimilation methodologies to improve the unstructured-grid models in the coastal seas have been developed only recently and need significant advancements. Here, we link the unstructured-grid ocean modeling to the variational data assimilation methods. In particular, we show results from the modeling system SANIFS based on SHYFEM fully-baroclinic unstructured-grid model interfaced with OceanVar, a state-of-art variational data assimilation scheme adopted for several systems based on a structured grid. OceanVar implements a 3DVar DA scheme. The combination of three linear operators models the background error covariance matrix. The vertical part is represented using multivariate EOFs for temperature, salinity, and sea level anomaly. The horizontal part is assumed to be Gaussian isotropic and is modeled using a first-order recursive filter algorithm designed for structured and regular grids. Here we introduced a novel recursive filter algorithm for unstructured grids. A local hydrostatic adjustment scheme models the rapidly evolving part of the background error covariance. We designed two data assimilation experiments using SANIFS implementation interfaced with OceanVar over the period 2017-2018, one with only temperature and salinity assimilation by Argo profiles and the second also including sea level anomaly. The results showed a successful implementation of the approach and the added value of the assimilation for the active tracer fields. While looking at the broad basin, no significant improvements are highlighted for the sea level, requiring future investigations. Furthermore, a Machine Learning methodology based on an LSTM network has been used to predict the model SST increments.
Assessing brain connectivity through electroencephalographic signal processing and modeling analysis
Resumo:
Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.
Resumo:
In this thesis, a TCAD approach for the investigation of charge transport in amorphous silicon dioxide is presented for the first time. The proposed approach is used to investigate high-voltage silicon oxide thick TEOS capacitors embedded in the back-end inter-level dielectric layers for galvanic insulation applications. In the first part of this thesis, a detailed review of the main physical and chemical properties of silicon dioxide and the main physical models for the description of charge transport in insulators are presented. In the second part, the characterization of high-voltage MIM structures at different high-field stress conditions up to the breakdown is presented. The main physical mechanisms responsible of the observed results are then discussed in details. The third part is dedicated to the implementation of a TCAD approach capable of describing charge transport in silicon dioxide layers in order to gain insight into the microscopic physical mechanisms responsible of the leakage current in MIM structures. In particular, I investigated and modeled the role of charge injection at contacts and charge build-up due to trapping and de-trapping mechanisms in the oxide layer to the purpose of understanding its behavior under DC and AC stress conditions. In addition, oxide breakdown due to impact-ionization of carriers has been taken into account in order to have a complete representation of the oxide behavior at very high fields. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach. In the last part of the thesis, the proposed approach has been applied to simulate the breakdown in realistic structures under different stress conditions. The TCAD tool has been used to carry out a detailed analysis of the most relevant physical quantities, in order to gain a detailed understanding on the main mechanisms responsible for breakdown and guide design optimization.
Resumo:
Clear cell sarcoma of the kidney (CCSK) is the second most common pediatric renal tumor, characterized in 90% of cases by the presence of internal tandem duplications (ITDs) localized at the last exon of BCOR gene. BCOR protein constitute a core component of the non-canonical Polycomb Repressive Complex1 (PRC1.1), which performs a fundamental silencing activity. ITDs in the last BCOR exon at the level of PUFD domain have been identified in many tumor subtypes and could affect PCGF1 binding and the subsequent PRC1.1 activity, although the exact oncogenic mechanism of ITD remains poorly understood. This project has the objective of investigating the molecular mechanisms underlying the oncogenesis of CCSK, approaching the study with different methodologies. A first model in HEK-293 allowed to obtain important informations about BCOR functionality, suggesting that the presence of ITD generates an altered activity which is very different from a loss-of-function. It has also been observed that BCOR function within the PRC1.1 complex varies with different ITDs. Moreover, it allowed the identification of molecular signatures evoked by the presence of BCOR-ITD, including its role in extracellular matrix interactions and invasiveness promotion. The parallel analysis of WTS data from 8 CCSK cases permitted the identification of a peculiar signature for metastatic CCSKs, highlighting a 20-fold overexpression of FGF3. This factor promoted a significant increase in invasive ability in the cellular model. In order to study BCOR-ITD effects over cell stemness and differentiation, an inducible model is being obtained in H1 cells. This way, it will be possible to study the functionality of BCOR-ITD in a context more similar to the origin of CCSKs, evaluating both the specific interactome and phenotypic consequences caused by the mutation.
Resumo:
The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.
Resumo:
Rhodamine B (RB) has been successfully exploited in the synthesis of light harvesting systems, but since RB is prone to form dimers acting as quenchers for the fluorescence, high energy transfer efficiencies can be reached only when using bulky and hydrophobic counterions acting as spacers between RBs. In this PhD thesis, a multiscale theoretical study aimed at providing insights into the structural, photophysical and optical properties of RB and its aggregates is presented. At the macroscopic level (no atomistic details) a phenomenological model describing the fluorescence decay of RB networks in presence of both quenching from dimers and exciton-exciton annihiliation is presented and analysed, showing that the quenching from dimers affects the decay only at long times, a feature that can be exploited in global fitting analysis to determine relevant chemical and photophysical information. At the mesoscopic level (atomistic details but no electronic structure) the RB aggregation in water in presence of different counterions is studied with molecular dynamics (MD) simulations. A new force field has been parametrized for describing the RB flexibility and the RB-RB interaction driving the dimerization. Simulations correctly predict the RB/counterion aggregation only in presence of bulky and hydrophobic counterion and its ability to prevent the dimerization. Finally, at the microscopic level, DFT calculations are performed to demonstrate the spacing action of bulky counterions, but standard TDDFT calculations are showed to fail in correctly describing the excited states of RB and its dimers. Moreover, also standard procedures proposed in literature for obtaining ad hoc functionals are showed to not work properly. A detailed analysis on the effect of the exact exchange shows that its short-range contribution is the crucial quantity for ameliorating results, and a new functional containing a proper amount of such an exchange is proposed and successfully tested.
Resumo:
This thesis aims to illustrate the construction of a mathematical model of a hydraulic system, oriented to the design of a model predictive control (MPC) algorithm. The modeling procedure starts with the basic formulation of a piston-servovalve system. The latter is a complex non linear system with some unknown and not measurable effects that constitute a challenging problem for the modeling procedure. The first level of approximation for system parameters is obtained basing on datasheet informations, provided workbench tests and other data from the company. Then, to validate and refine the model, open-loop simulations have been made for data matching with the characteristics obtained from real acquisitions. The final developed set of ODEs captures all the main peculiarities of the system despite some characteristics due to highly varying and unknown hydraulic effects, like the unmodeled resistive elements of the pipes. After an accurate analysis, since the model presents many internal complexities, a simplified version is presented. The latter is used to linearize and discretize correctly the non linear model. Basing on that, a MPC algorithm for reference tracking with linear constraints is implemented. The results obtained show the potential of MPC in this kind of industrial applications, thus a high quality tracking performances while satisfying state and input constraints. The increased robustness and flexibility are evident with respect to the standard control techniques, such as PID controllers, adopted for these systems. The simulations for model validation and the controlled system have been carried out in a Python code environment.
Resumo:
Fiber-reinforced concrete is a composite material consisting of discrete, discontinuous, and uniformly distributed fibers in plain concrete primarily used to enhance the tensile properties of the concrete. FRC performance depends upon the fiber, interface, and matrix properties. The use of fiber-reinforced concrete has been increasing substantially in the past few years in different fields of the construction industry such as ground-level application in sidewalks and building floors, tunnel lining, aircraft parking, runways, slope stabilization, etc. Many experiments have been performed to observe the short-term and long-term mechanical behavior of fiber-reinforced concrete in the last decade and numerous numerical models have been formulated to accurately capture the response of fiber-reinforced concrete. The main purpose of this dissertation is to numerically calibrate the short-term response of the concrete and fiber parameters in mesoscale for the three-point bending test and cube compression test in the MARS framework which is based on the lattice discrete particle model (LDPM) and later validate the same parameters for the round panels. LDPM is the most validated theory in mesoscale theories for concrete. Different seeds representing the different orientations of concrete and fiber particles are simulated to produce the mean numerical response. The result of numerical simulation shows that the lattice discrete particle model for fiber-reinforced concrete can capture results of experimental tests on the behavior of fiber-reinforced concrete to a great extent.
Resumo:
The first theoretical results of core-valence correlation effects are presented for the infrared wavenumbers and intensities of the BF3 and BCl3 molecules, using (double- and triple-zeta) Dunning core-valence basis sets at the CCSD(T) level. The results are compared with those calculated in the frozen core approximation with standard Dunning basis sets at the same correlation level and with the experimental values. The general conclusion is that the effect of core-valence correlation is, for infrared wavenumbers and intensities, smaller than the effect of adding augmented diffuse functions to the basis set, e.g., cc-pVTZ to aug-cc-pVTZ. Moreover, the trends observed in the data are mainly related to the augmented functions rather than the core-valence functions added to the basis set. The results obtained here confirm previous studies pointing out the large descrepancy between the theoretical and experimental intensities of the stretching mode for BCl3.
Resumo:
Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and host plant use by lepidopterans. The magnitude of ant-induced effects on caterpillar occurrence across the cerrado landscape may depend on how ants use plants locally and how they respond to liquid food on plants at different habitats. This study enhances the relevance of plant-ant and ant-herbivore interactions in cerrado and highlights the importance of a tritrophic perspective in this ant-rich environment.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.
Resumo:
The purpose of this study was to assess whether the adhesive permits the collateral repair of axons originating from a vagus nerve to the interior of a sural nerve graft, and whether low-level laser therapy (LLLT) assists in the regeneration process. Study sample consisted of 32 rats randomly separated into three groups: Control Group (CG; n=8), from which the intact sural nerve was collected; Experimental Group (EG; n=12), in which one of the ends of the sural nerve graft was coapted to the vagus nerve using the fibrin glue; and Experimental Group Laser (EGL; n=12), in which the animals underwent the same procedures as those in EG with the addition of LLLT. Ten weeks after surgery, the animals were euthanized. Morphological analysis by means of optical and electron microscopy, and morphometry of the regenerated fibers were employed to evaluate the results. Collateral regeneration of axons was observed from the vagus nerve to the interior of the autologous graft in EG and EGL, and in CG all dimensions measured were greater and presented a significant difference in relation to EG and EGL, except for the area and thickness of the myelin sheath, that showed significant difference only in relation to the EG. The present study demonstrated that the fibrin glue makes axonal regeneration feasible and is an efficient method to recover injured peripheral nerves, and the use of low-level laser therapy enhances nerve regeneration.