867 resultados para Titanium (Ti) machining
Resumo:
The electronic structure of Pb1-xLaxTiO3 (PLT) compounds for x ranging from 0 to 30 at. % of La is investigated by means of soft x-ray absorption near edge structure (XANES) at the Ti L-3,L-2 and O K edges. The greatest modification in the structure of the Ti 2p XANES spectra of the PLT compounds is observed in the region of the high energy peak of the L-3 edge (e(g) states), which exhibits a splitting in the undoped sample. As the amount of lanthanum increases, this splitting becomes less pronounced. This modification is interpreted as a decrease in the degree of disorder of titanium atoms, which is correlated to the substitution of Pb by La atoms. The structural changes observed at the low energy peaks of the O K-edge XANES spectra of the PLT compounds may be interpreted in terms of hybridization between O 2p, Ti 3d, and Pb 6p orbitals. A decrease in the degree of hybridization observed as Pb atoms are replaced by La atoms may be related to the differences in the ferroelectric properties observed between x=0.0 and x=0.30 compounds. (c) 2006 American Institute of Physics.
Resumo:
This work aims the evaluation of the kinetic triplets corresponding to the two successive steps of thermal decomposition of Ti(IV)-ethylenediaminetetraacetate complex. Applying the isoconversional Wall-Flynn-Ozawa method on the DSC curves, average activation energy: E=172.4 +/- 9.7 and 205.3 +/- 12.8 kJ mol(-1), and pre-exponential factor: logA = 16.38 +/- 0.84 and 18.96 +/- 1.21 min(-1) at 95% confidence interval could be obtained, regarding the partial formation of anhydride and subsequent thermal decomposition of uncoordinated carboxylate groups, respectively.From E and logA values, Dollimore and Malek methods could be applied suggesting PT (Prout-Tompkins) and R3 (contracting volume) as the kinetic model to the partial formation of anhydride and thermal decomposition of the carboxylate groups, respectively.
Resumo:
Ti-Mo alloys from 4 to 20 Mo wt.% were arc-melted. Their compositions and surfaces were analyzed by EDX, XRF and SEM. The Mo mapping shows a homogeneous distribution for all alloys. The XRD analysis showed that the crystal structure of the alloys is sensitive to the Mo concentration; a mixture of the hexagonal alpha' and orthorhombic alpha '' phases was observed for the Ti-4Mo alloy, and the alpha '' phase is observed almost exclusively when the concentration of Mo added to the Ti reaches 6%. A significant retention of the beta phase is observed for the alloy containing 10% Mo, while at higher Mo concentrations (15% and 20%), retention of phase beta is only verified. Preliminary electrochemical studies have indicated a valve-metal behavior and good corrosion resistance in aerated Ringer solution for all alloys. (c) 2006 Published by Elsevier B.V.
Resumo:
Objectives. Alterations in the commercially pure titanium (cpTi) surface may be undertaken to improve its biological properties. The aim of this study is to investigate the biocompatibility of cpTi submitted to different surface treatments.Methods. The cpTi surfaces were prepared so that machined and blasted surfaces, either acid etched or not, were compared using rat bone marrow cells cultured to differentiated into osteoblast. For attachment evaluation, cells were cultured for 4 and 24 h. Cell morphology was evaluated after 3 days. After 7, 14, and 21 days cell proliferation was evaluated. Total protein content and alkaline phosphatase (ALP) activity were evaluated after 14 and 21 days. For bone-like nodule formation, cells were cultured for 21 days. Data were compared by analysis of variance.Results. Cell attachment, cell morphology, cell proliferation, and ALP activity were not affected by surface treatments. Total. protein content was reduced by blasted and acid etched surface. Bone-Like nodule formation was significantly reduced by blasted, acid etched, and a combination of both blasted and acid etched surfaces.Conclusions. Based on these results, it can be suggested that cpTi surfaces that were submitted only to machining treatment favor the final event of osteoblastic differentiation of the rat bone marrow cells, evidenced by increased bone-Like nodule formation. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Silica gel with a surface area of 500 m2g-1 and an average pore diameter of 60 angstrom was chemically modified with Ti(IV) oxide using the grafting method. The amount of metal oxide attached to the surface was 1.8.10(-3) mol g-1. The X-ray photoelectron spectra showed that the metal ion species on the surface are Ti(IV) in TiO2 and MTiO3 (M = Ca2+, Sr2+, Ba2+ and Pb2+), i.e. they have the binding energy of Ti2p3/2 = 458.7 eV. The dehydration of the solid at higher temperature increased the O(II)/Ti (O(II) = oxygen bound to titanium atom) ratio, presumably due to a reticulation of the hydrous Ti(IV) oxide on the silica surface at higher temperatures. Migration of Ti(IV) into the silica gel matrix was observed but the specific surface area was not significantly changed.
Resumo:
The immobilization of soluble catalyst {Tp(Ms)}TiCl3 (Tp(Ms*)HB(3-mesityl-pyrazolyl)(2)(5-mesityl-pyrazolyl)(-)) on silica and MAO-modified silicas containing 4.0, 8.0 and 23.0 wt.% Al/SiO2 yields active supported catalysts for ethylene polymerization. Among the supported catalysts studied by XRF spectroscopy, higher titanium content was obtained using MAO-modified silica containing 8.0 wt.% Al/SiO2 as support. For the ethylene polymerization reactions carried out in hexane at 60degreesC using a combination of triisobutylaluminum (TiBA) and methylaluminoxane (MAO) (1:1), the activities varied between 24.4 and 113.5 kg of PE/mol [Ti] h. The highest activity is reached using MAO-modified silica containing 4.0 wt.% Al/SiO2 as support. The viscosity-average molecular weights ((M) over bar (v)) of the PE's produced with the supported catalysts varying from 1.44 to 9.94 x 10(5) g/mol with melting temperatures in the range of 125-140degreesC. The use of other Lewis acid cocatalysts, including TiBA, diethylaluminium chloride (DEAC), and trimethylaluminum (TMA) resulted also in the formation of active catalysts for ethylene polymerization. However, the activities are lower than that one using a combination of TiBA and MAO. The viscosity-average molecular weights (R,) of PE's are influenced by varying the cocatalysts as well as the Al/Ti molar ratio. The supported catalyst generated in situ under ethylene atmosphere is roughly four times more active than supported one containing 4.0 wt.% Al/SiO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this work films were produced by the plasma enhanced chemical vapor deposition (PECVD) of titanium tetraisopropoxide-oxygen-helium mixtures and irradiated with 150 keV singly-charged nitrogen ions (N(+)) at fluences, phi, between 10(14) and 10(16) cm(-2). Irradiation resulted in compaction, which reached about 40% (measured via the film thickness) at the highest fluence. Infrared reflection-absorption spectroscopy (IRRAS) revealed the presence of Ti-O bonds in all films. Both O-H and C-H groups were present in the as-deposited films, but the density of each of these decreased with increasing phi and was absent at high phi, indicating a loss of hydrogen. X-ray photoelectron spectroscopy (XPS) analyses revealed an increase in the C to Ti atomic ratio as phi increased, while the O to Ti ratio hardly altered, remaining at around 2.8. The optical gap of the films, derived from data obtained by ultraviolet-visible spectroscopy (UVS), remained at about 3.6 eV for all fluences except the highest, for which an abrupt fall to around 1.0 eV was observed. For the irradiated films, the electrical conductivity, measured using the two-point method, showed a systematic increase with increasing phi. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The mechanical properties of metals with bee structure, such as niobium and their alloys, are changed of a significant way by the introduction of heavy interstitial elements. These interstitial elements (oxygen, for example) present in the metallic matrix occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. Polycrystalline samples of Nb-0.3 wt.% Ti (Nb-Ti) alloy with oxygen in solid solution were analysed. The anelastic spectroscopy measurements had been made in a torsion pendulum, with frequencies in the Hz range, in a temperature range between 300 and 700 K. The results showed thermally activated relaxation structures were identified four relaxation process attributed to stress-induced ordering of single oxygen, nitrogen and carbon atoms around niobium and stress-induced ordering of single oxygen atoms around titanium atoms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Thin films were deposited by plasma enhanced chemical vapor deposition from titanium (IV) ethoxide (TEOT)-oxygen-helium mixtures. Actinometric optical emission spectroscopy was used to obtain the relative plasma concentrations of the species H, CH, O and CO as a function of the percentage of oxygen in the feed, R(ox). The concentrations of these species rise with increasing R(ox) and tend to fall for R(ox) greater than about 45%. As revealed by a strong decline in the emission intensity of the actinometer Ar as R(ox) was increased, the electron mean energy or density (or both) decreased as greater proportions of oxygen were fed to the chamber. This must tend to reduce gas-phase fragmentation of the monomer by plasma electrons. As the TEOT flow rate was fixed, however, and since the species H and CH do not contain oxygen, the rise in their plasma concentrations with increasing R(ox) is explained only by intermediate reactions involving oxygen or oxygen-containing species. Transmission infrared (IRS) and X-ray photoelectron (XPS) spectroscopies were employed to investigate film structure and composition. The presence of CH(2), CH(3), C=C, C-O and C=O groups was revealed by IRS. In addition, the presence of C-O and C=O groups was confirmed by XPS, which also revealed titanium in the +4 valence state. The Ti content of the films, however, was found to be much less than that of the monomer material itself. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Titanium alloy parts are ideally suited for advanced aerospace systems and surgical implants because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent corrosion resistance. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy, due to its lower modulus of elasticity and high biocompatibility, is a promising candidate for surgical and aerospace applications. Samples were produced by mixing of initial metallic hydride powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 700 and 1500 degrees C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microbardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like a structure and intergranular P. A few remaining pores are still found, and density above 97% for specimens sintered at 1500 degrees C is reached. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the theoretical and experimental results for oxide thin film growth on titanium films previously deposited over glass substrate. Ti films of thickness 0.1 μm were heated by Nd:YAG laser pulses in air. The oxide tracks were created by moving the samples with a constant speed of 2 mm/s, under the laser action. The micro-topographic analysis of the tracks was performed by a microprofiler. The results taken along a straight line perpendicular to the track axis revealed a Gaussian profile that closely matches the laser's spatial mode profile, indicating the effectiveness of the surface temperature gradient on the film's growth process. The sample's micro-Raman spectra showed two strong bands at 447 and 612 cm -1 associated with the TiO 2 structure. This is a strong indication that thermo-oxidation reactions took place at the Ti film surface that reached an estimated temperature of 1160 K just due to the action of the first pulse. The results obtained from the numerical integration of the analytical equation which describes the oxidation rate (Wagner equation) are in agreement with the experimental data for film thickness in the high laser intensity region. This shows the partial accuracy of the one-dimensional model adopted for describing the film growth rate. © 2001 Elsevier Science B.V.
Resumo:
The commercial pure titanium (cp-Ti) is currently being used with great success in dental implants. In this work we investigate how the cp-Ti implants can be improved by modifying the metal surface morphology, on which a synthetic material with properties similar to that of the inorganic part of the bone, is deposited to facilitate the bone/implant bonding. This synthetic material is the hydroxyapatite, HA, a calcium-phosphate ceramic. The surface modification consists in the application of a titanium oxide (TiO2) layer, using the thermal aspersion - plasma spray technique, with posterior deposition of HA, using the biomimetic method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques have been used for characterizing phases, microstructures and morphologies of the coatings. The TiO2 deposit shows a mixture of anatase, rutilo and TiO2-x phases, and a porous and laminar morphology, which facilitate the HA deposition. After the thermal treatment, the previously amorphous structured HA coating, shows a porous homogeneous morphology with particle size of about 2-2.5 μm, with crystallinity and composition similar to that of the biological HA.
Resumo:
Recent studies have been done to achieve biomedical alloys containing non-toxic elements and presenting low elastic moduli. It has been reported that Ti-Nb-Zr alloys rich in beta phase, especially Ti-13Nb-13Zr, have potential characteristics for substituting conventional materials such as Ti-6Al-4V, stainless steel and Co alloys. The aim of this work is to study the internal friction (IF) of Ti-13Nb-13Zr (TNZ) alloy due to the importance of the absorption impacts in orthopedic applications. The internal friction of this alloy produced by arc melting was measured using an inverted torsion pendulum with the free decay method. The measurements were performed from 77 to 700 K with heating rate of 1 K/min, in a vacuum better than 10-5 mBar. The results show a relaxation structure at high temperature strongly dependent on microstructure of the material. Qualitative discussions are presented for the experimental results, and the possibility of using the TNZ as a high damping material is briefly mentioned.