906 resultados para Timed and Probabilistic Automata
Resumo:
Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.
Resumo:
In computer simulations of smooth dynamical systems, the original phase space is replaced by machine arithmetic, which is a finite set. The resulting spatially discretized dynamical systems do not inherit all functional properties of the original systems, such as surjectivity and existence of absolutely continuous invariant measures. This can lead to computational collapse to fixed points or short cycles. The paper studies loss of such properties in spatial discretizations of dynamical systems induced by unimodal mappings of the unit interval. The problem reduces to studying set-valued negative semitrajectories of the discretized system. As the grid is refined, the asymptotic behavior of the cardinality structure of the semitrajectories follows probabilistic laws corresponding to a branching process. The transition probabilities of this process are explicitly calculated. These results are illustrated by the example of the discretized logistic mapping.
Resumo:
A comprehensive probabilistic model for simulating microstructure formation and evolution during solidification has been developed, based on coupling a Finite Differential Method (FDM) for macroscopic modelling of heat diffusion to a modified Cellular Automaton (mCA) for microscopic modelling of nucleation, growth of microstructures and solute diffusion. The mCA model is similar to Nastac's model for handling solute redistribution in the liquid and solid phases, curvature and growth anisotropy, but differs in the treatment of nucleation and growth. The aim is to improve understanding of the relationship between the solidification conditions and microstructure formation and evolution. A numerical algorithm used for FDM and mCA was developed. At each coarse scale, temperatures at FDM nodes were calculated while nucleation-growth simulation was done at a finer scale, with the temperature at the cell locations being interpolated from those at the coarser volumes. This model takes account of thermal, curvature and solute diffusion effects. Therefore, it can not only simulate microstructures of alloys both on the scale of grain size (macroscopic level) and the dendrite tip length (mesoscopic level), but also investigate nucleation mechanisms and growth kinetics of alloys solidified with various solute concentrations and solidification morphologies. The calculated results are compared with values of grain sizes and solidification morphologies of microstructures obtained from a set of casting experiments of Al-Si alloys in graphite crucibles.
Resumo:
The purpose of this study was threefold: first, the study was designed to illustrate the use of data and information collected in food safety surveys in a quantitative risk assessment. In this case, the focus was on the food service industry; however, similar data from other parts of the food chain could be similarly incorporated. The second objective was to quantitatively describe and better understand the role that the food service industry plays in the safety of food. The third objective was to illustrate the additional decision-making information that is available when uncertainty and variability are incorporated into the modelling of systems. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
Regional commodity forecasts are being used increasingly in agricultural industries to enhance their risk management and decision-making processes. These commodity forecasts are probabilistic in nature and are often integrated with a seasonal climate forecast system. The climate forecast system is based on a subset of analogue years drawn from the full climatological distribution. In this study we sought to measure forecast quality for such an integrated system. We investigated the quality of a commodity (i.e. wheat and sugar) forecast based on a subset of analogue years in relation to a standard reference forecast based on the full climatological set. We derived three key dimensions of forecast quality for such probabilistic forecasts: reliability, distribution shift, and change in dispersion. A measure of reliability was required to ensure no bias in the forecast distribution. This was assessed via the slope of the reliability plot, which was derived from examination of probability levels of forecasts and associated frequencies of realizations. The other two dimensions related to changes in features of the forecast distribution relative to the reference distribution. The relationship of 13 published accuracy/skill measures to these dimensions of forecast quality was assessed using principal component analysis in case studies of commodity forecasting using seasonal climate forecasting for the wheat and sugar industries in Australia. There were two orthogonal dimensions of forecast quality: one associated with distribution shift relative to the reference distribution and the other associated with relative distribution dispersion. Although the conventional quality measures aligned with these dimensions, none measured both adequately. We conclude that a multi-dimensional approach to assessment of forecast quality is required and that simple measures of reliability, distribution shift, and change in dispersion provide a means for such assessment. The analysis presented was also relevant to measuring quality of probabilistic seasonal climate forecasting systems. The importance of retaining a focus on the probabilistic nature of the forecast and avoiding simplifying, but erroneous, distortions was discussed in relation to applying this new forecast quality assessment paradigm to seasonal climate forecasts. Copyright (K) 2003 Royal Meteorological Society.
Resumo:
The Timed Interval Calculus, a timed-trace formalism based on set theory, is introduced. It is extended with an induction law and a unit for concatenation, which facilitates the proof of properties over trace histories. The effectiveness of the extended Timed Interval Calculus is demonstrated via a benchmark case study, the mine pump. Specifically, a safety property relating to the operation of a mine shaft is proved, based on an implementation of the mine pump and assumptions about the environment of the mine. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
INTRODUCTION: Self-reported weight and height were compared with direct measurements in order to evaluate the agreement between the two sources. METHOD: Data were obtained from a cross-sectional study on health status from a probabilistic sample of 1,183 employees of a bank, in Rio de Janeiro State, Brazil. Direct measurements were made of 322 employees. Differences between the two sources were evaluated using mean differences, limits of agreement and intraclass correlation coefficient (ICC). RESULTS AND CONCLUSIONS: Men and women tended to underestimate their weight while differences between self-reported and measured height were insignificant. Body mass index (BMI) mean differences were smaller than those observed for weight. ICC was over 0.98 for weight and 0.95 for BMI, expressing close agreement. Combining a graphical method with ICC may be useful in pilot studies to detect populational groups capable of providing reliable information on weight and height, thus minimizing resources needed for field work.
Resumo:
OBJECTIVES: To estimate the prevalence of occupational injuries and identify their risk factors among students in two municipalities. METHODS: A cross-sectional survey was conducted in public schools of the municipalities of Santo Antonio do Pinhal and Monteiro Lobato, Brazil. A stratified probabilistic sample was drawn from public middle and high schools of the study municipalities. A total of 781 students aged 11 to 19 years participated in the study. Students attending middle and high school answered a comprehensive questionnaire on living and working conditions, as well as aspects of work injuries, and health conditions. Multiple logistic regression models were fitted to estimate risk factors of previous and present occupational injuries. RESULTS: Of 781 students, 604 previously had or currently have jobs and 47% reported previous injuries. Among current workers (n=555), 38% reported injuries on their current job. Risk factors for work injuries with statistically significant odds ratio >2.0 included attending evening school, working as a housekeeper, waiter or brickmaker, and with potentially dangerous machines. CONCLUSIONS: The study results reinforce the need of restricting adolescent work and support communities to implement social promotion programs.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
This paper presents a methodology for distribution networks reconfiguration in outage presence in order to choose the reconfiguration that presents the lower power losses. The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. Once obtained the system states by Monte Carlo simulation, a logical programming algorithm is applied to get all possible reconfigurations for every system state. In order to evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation a distribution power flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology to a practical case, the paper includes a case study that considers a real distribution network.
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
Distributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund’s exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks.
Resumo:
In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by Beta* (p, q), which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for p = 2, the investigation is extended to the extreme value models of Weibull and Frechet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the Beta* (2, q) densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.
Resumo:
OBJECTIVE: To determine the best cut-offs of body mass index for identifying alterations of blood lipids and glucose in adolescents. METHODS: A probabilistic sample including 577 adolescent students aged 12-19 years in 2003 (210 males and 367 females) from state public schools in the city of Niterói, Southeastern Brazil, was studied. The Receiver Operating Characteristic curve was used to identify the best age-adjusted BMI cut-off for predicting high levels of serum total cholesterol (>150mg/dL), LDL-C (>100mg/dL), serum triglycerides (>100mg/dL), plasma glucose (>100mg/dL) and low levels of HDL-C (< 45mg/dL). Four references were used to calculate sensitivity and specificity of BMI cut-offs: one Brazilian, one international and two American. RESULTS: The most prevalent metabolic alterations (>50%) were: high total cholesterol and low HDL-C. BMI predicted high levels of triglycerides in males, high LDL-C in females, and high total cholesterol and the occurrence of three or more metabolic alterations in both males and females (areas under the curve range: 0.59 to 0.67), with low sensitivity (57%-66%) and low specificity (58%-66%). The best BMI cut-offs for this sample (20.3 kg/m² to 21.0 kg/m²) were lower than those proposed in the references studied. CONCLUSIONS: Although BMI values lower than the International cut-offs were better predictor of some metabolic abnormalities in Brazilian adolescents, overall BMI is not a good predictor of these abnormalities in this population.